Note
Go to the end to download the full example code.
Create a basic operator plugin#
This example shows how to create a basic operator plugin, which is for
a single custom operator. This custom operator, easy_statistics
,
computes simple statistics quantities on a scalar field with the help of
the numpy
package.
The objective of this simple example is to show how routines for DPF can be wrapped in Python plugins.
Note
This example requires DPF 4.0 (Ansys 2022R2) or above. For more information, see Compatibility.
Create the operator#
Creating a basic operator plugin consists of writing a single Python script.
An operator implementation derives from the
ansys.dpf.core.custom_operator.CustomOperatorBase
class
and a call to the ansys.dpf.core.custom_operator.record_operator()
method.
The easy_statistics
operator takes a field as an input and returns
the first quartile, the median, the third quartile, and the variance.
The Python operator and its recording are available in the
easy_statistics.py
file.
Download and display the Python script.
from ansys.dpf.core.examples import download_easy_statistics
from pathlib import Path
operator_file_path = Path(download_easy_statistics())
with operator_file_path.open() as file:
for line in file.readlines():
print("\t\t\t" + line)
import numpy as np
from ansys.dpf import core as dpf
from ansys.dpf.core.custom_operator import CustomOperatorBase, record_operator
from ansys.dpf.core.operator_specification import CustomSpecification, SpecificationProperties, \
PinSpecification
class EasyStatistics(CustomOperatorBase):
@property
def name(self):
return "easy_statistics"
@property
def specification(self) -> CustomSpecification:
spec = CustomSpecification()
spec.description = "Compute the first quartile, the median, the third quartile and" \
" the variance of a scalar Field with numpy"
spec.inputs = {
0: PinSpecification("field", [dpf.Field, dpf.FieldsContainer],
"scalar Field on which the statistics quantities is computed."),
}
spec.outputs = {
0: PinSpecification("first_quartile", [float]),
1: PinSpecification("median", [float]),
2: PinSpecification("third_quartile", [float]),
3: PinSpecification("variance", [float]),
}
spec.properties = SpecificationProperties("easy statistics", "math")
return spec
def run(self):
field = self.get_input(0, dpf.Field)
if field is None:
field = self.get_input(0, dpf.FieldsContainer)[0]
# compute stats
first_quartile_val = np.quantile(field.data, 0.25)
median_val = np.quantile(field.data, 0.5)
third_quartile_val = np.quantile(field.data, 0.75)
variance_val = np.var(field.data)
self.set_output(0, first_quartile_val)
self.set_output(1, median_val)
self.set_output(2, third_quartile_val)
self.set_output(3, float(variance_val))
self.set_succeeded()
def load_operators(*args):
record_operator(EasyStatistics, *args)
Load the plugin#
You use the ansys.dpf.core.core.load_library()
method to load the
plugin.
# - The first argument is the path to the directory where the plugin
# is located.
# - The second argument is ``py_`` plus the name of the Python script.
# - The third argument is the name of the function used to record operators.
#
from ansys.dpf import core as dpf
from ansys.dpf.core import examples
# Python plugins are not supported in process.
dpf.start_local_server(config=dpf.AvailableServerConfigs.GrpcServer)
operator_server_file_path = Path(dpf.upload_file_in_tmp_folder(operator_file_path))
dpf.load_library(operator_server_file_path.parent, "py_easy_statistics", "load_operators")
'py_easy_statistics successfully loaded'
Instantiate the operator.
new_operator = dpf.Operator("easy_statistics")
Connect a workflow#
Connect a workflow that computes the norm of the displacement to the
easy_statistics
operator. Methods of the easy_statistics
class
are dynamically added because specifications for the operator are
defined in the plugin.
Use the operator#
ds = dpf.DataSources(dpf.upload_file_in_tmp_folder(examples.find_static_rst()))
displacement = dpf.operators.result.displacement(data_sources=ds)
norm = dpf.operators.math.norm(displacement)
new_operator.inputs.connect(norm)
print("first quartile is", new_operator.outputs.first_quartile())
print("median is", new_operator.outputs.median())
print("third quartile is", new_operator.outputs.third_quartile())
print("variance is", new_operator.outputs.variance())
first quartile is 0.0
median is 7.491665033689507e-09
third quartile is 1.4276663319275634e-08
variance is 3.054190175494998e-17
Total running time of the script: (0 minutes 3.877 seconds)