Note
Go to the end to download the full example code.
Plot results on a specific path#
This example shows how to get a result mapped over a specific path and how to plot it.
import matplotlib.pyplot as plt
from ansys.dpf import core as dpf
from ansys.dpf.core import examples
from ansys.dpf.core import operators as ops
from ansys.dpf.core.plotter import DpfPlotter
Plot path#
Use the ansys.dpf.core.plotter.DpfPlotter
class to plot a mapped
result over a defined path of coordinates.
# Create the model and request its mesh and displacement data.
model = dpf.Model(examples.find_static_rst())
mesh = model.metadata.meshed_region
stress_fc = model.results.stress().eqv().eval()
Create a coordinates field to map on.
coordinates = [[0.024, 0.03, 0.003]]
delta = 0.001
n_points = 51
for i in range(1, n_points):
coord_copy = coordinates[0].copy()
coord_copy[1] = coord_copy[0] + i * delta
coordinates.append(coord_copy)
field_coord = dpf.fields_factory.create_3d_vector_field(len(coordinates))
field_coord.data = coordinates
field_coord.scoping.ids = list(range(1, len(coordinates) + 1))
Compute the mapped data using the mapping operator.
mapping_operator = ops.mapping.on_coordinates(
fields_container=stress_fc, coordinates=field_coord, create_support=True, mesh=mesh
)
fields_mapped = mapping_operator.outputs.fields_container()
Request the mapped field data and its mesh.
field_m = fields_mapped[0]
mesh_m = field_m.meshed_region
Create the plotter and add fields and meshes.
pl = DpfPlotter()
pl.add_field(field_m, mesh_m)
pl.add_mesh(mesh, style="surface", show_edges=True, color="w", opacity=0.3)
# Plot the result.
pl.show_figure(show_axes=True)
Plot the solution along the specified line. Note that since the line is only moving along the y-axis, the stresses are plotted with respect to the y coordinate.
y_coords = [mesh_m.nodes.coordinates_field.data[i][1] for i in range(mesh_m.nodes.n_nodes)]
plt.plot(y_coords, field_m.data, "r")
plt.xlabel(f"y-coordinate [{mesh.unit}]")
plt.ylabel(f"Stress [{field_m.unit}]")
plt.show()
Total running time of the script: (0 minutes 1.720 seconds)