iso_surfaces#

Autogenerated DPF operator classes.

class ansys.dpf.core.operators.mesh.iso_surfaces.iso_surfaces(field=None, num_surfaces=None, mesh=None, slice_surfaces=None, vector_iso_values=None, config=None, server=None)#

Extract multiple iso-contours from mesh_cut operator and set it into a meshes container. If pin 1 is provided, ‘num_surfaces’ iso- contours will be computed, ranging from ‘min_value’ to ‘max_value’ linearly. If pin 4 is provided, the iso-values are the one set by the user. The iso-values are stored into a FieldsContainer.

Parameters:
  • field (Field) – Field containing the values for the iso- surface computation. the mesh can be retrieved from this field’s support or through pin 2.

  • num_surfaces (int, optional) – If provided, iso_values are linearly computed between the min and the max of the field of results. if not, iso_values must be provided by the user through pin 4

  • mesh (MeshedRegion, optional) – Mesh to compute the iso-surface from. used when not given through the support of the field in pin 0.

  • slice_surfaces (bool) – True: slicing will also take into account shell and skin elements. false: slicing will ignore shell and skin elements. the default is true.

  • vector_iso_values (optional) – If provided, user defined iso_values to compute. if not provided, iso_values are linearly compute between the min and the max of the field of results.

Examples

>>> from ansys.dpf import core as dpf
>>> # Instantiate operator
>>> op = dpf.operators.mesh.iso_surfaces()
>>> # Make input connections
>>> my_field = dpf.Field()
>>> op.inputs.field.connect(my_field)
>>> my_num_surfaces = int()
>>> op.inputs.num_surfaces.connect(my_num_surfaces)
>>> my_mesh = dpf.MeshedRegion()
>>> op.inputs.mesh.connect(my_mesh)
>>> my_slice_surfaces = bool()
>>> op.inputs.slice_surfaces.connect(my_slice_surfaces)
>>> my_vector_iso_values = dpf.()
>>> op.inputs.vector_iso_values.connect(my_vector_iso_values)
>>> # Instantiate operator and connect inputs in one line
>>> op = dpf.operators.mesh.iso_surfaces(
...     field=my_field,
...     num_surfaces=my_num_surfaces,
...     mesh=my_mesh,
...     slice_surfaces=my_slice_surfaces,
...     vector_iso_values=my_vector_iso_values,
... )
>>> # Get output data
>>> result_meshes = op.outputs.meshes()
>>> result_fields_container = op.outputs.fields_container()
static default_config(server=None)#

Returns the default config of the operator.

This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator.

Parameters:

server (server.DPFServer, optional) – Server with channel connected to the remote or local instance. When None, attempts to use the global server.

property inputs#

Enables to connect inputs to the operator

Returns:

inputs

Return type:

InputsIsoSurfaces

property outputs#

Enables to get outputs of the operator by evaluating it

Returns:

outputs

Return type:

OutputsIsoSurfaces

property config#

Copy of the operator’s current configuration.

You can modify the copy of the configuration and then use operator.config = new_config or instantiate an operator with the new configuration as a parameter.

For information on an operator’s options, see the documentation for that operator.

Returns:

Copy of the operator’s current configuration.

Return type:

ansys.dpf.core.config.Config

Examples

Modify the copy of an operator’s configuration and set it as current config of the operator.

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.add()
>>> config_add = op.config
>>> config_add.set_work_by_index_option(True)
>>> op.config = config_add
connect(pin, inpt, pin_out=0)#

Connect an input on the operator using a pin number.

Parameters:
  • pin (int) – Number of the input pin.

  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer – Operator, os.PathLike Object to connect to.

  • MeshedRegion – Operator, os.PathLike Object to connect to.

  • MeshesContainer – Operator, os.PathLike Object to connect to.

  • DataSources – Operator, os.PathLike Object to connect to.

  • CyclicSupport – Operator, os.PathLike Object to connect to.

  • dict – Operator, os.PathLike Object to connect to.

  • Outputs – Operator, os.PathLike Object to connect to.

  • pin_out (int, optional) – If the input is an operator, the output pin of the input operator. The default is 0.

Examples

Compute the minimum of displacement by chaining the "U" and "min_max_fc" operators.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> max_fc_op = dpf.operators.min_max.min_max_fc()
>>> max_fc_op.inputs.connect(disp_op.outputs)
>>> max_field = max_fc_op.outputs.field_max()
>>> max_field.data
DPFArray([[0.59428386, 0.00201751, 0.0006032 ]]...
connect_operator_as_input(pin, op)#

Connects an operator as an input on a pin. :type pin: :param pin: Number of the output pin. The default is 0. :type pin: int :type op: :param op: Requested type of the output. The default is None. :type op: ansys.dpf.core.dpf_operator.Operator

eval(pin=None)#

Evaluate this operator.

Parameters:

pin (int) – Number of the output pin. The default is None.

Returns:

output – Returns the first output of the operator by default and the output of a given pin when specified. Or, it only evaluates the operator without output.

Return type:

FieldsContainer, Field, MeshedRegion, Scoping

Examples

Use the eval method.

>>> from ansys.dpf import core as dpf
>>> import ansys.dpf.core.operators.math as math
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> normfc = math.norm_fc(disp_op).eval()
get_output(pin=0, output_type=None)#

Retrieve the output of the operator on the pin number.

To activate the progress bar for server version higher or equal to 3.0, use my_op.progress_bar=True

Parameters:
  • pin (int, optional) – Number of the output pin. The default is 0.

  • output_type (ansys.dpf.core.common.types, type, optional) – Requested type of the output. The default is None.

Returns:

Output of the operator.

Return type:

type

static operator_specification(op_name, server=None)#

Documents an Operator with its description (what the Operator does), its inputs and outputs and some properties

property progress_bar: bool#

With this property, the user can choose to print a progress bar when the operator’s output is requested, default is False

run()#

Evaluate this operator.

property specification#

Returns the Specification (or documentation) of this Operator

Return type:

Specification

class ansys.dpf.core.operators.mesh.iso_surfaces.InputsIsoSurfaces(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to connect user inputs to iso_surfaces operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> my_field = dpf.Field()
>>> op.inputs.field.connect(my_field)
>>> my_num_surfaces = int()
>>> op.inputs.num_surfaces.connect(my_num_surfaces)
>>> my_mesh = dpf.MeshedRegion()
>>> op.inputs.mesh.connect(my_mesh)
>>> my_slice_surfaces = bool()
>>> op.inputs.slice_surfaces.connect(my_slice_surfaces)
>>> my_vector_iso_values = dpf.()
>>> op.inputs.vector_iso_values.connect(my_vector_iso_values)
property field#

Allows to connect field input to the operator.

Field containing the values for the iso- surface computation. the mesh can be retrieved from this field’s support or through pin 2.

Parameters:

my_field (Field) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> op.inputs.field.connect(my_field)
>>> # or
>>> op.inputs.field(my_field)
property num_surfaces#

Allows to connect num_surfaces input to the operator.

If provided, iso_values are linearly computed between the min and the max of the field of results. if not, iso_values must be provided by the user through pin 4

Parameters:

my_num_surfaces (int) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> op.inputs.num_surfaces.connect(my_num_surfaces)
>>> # or
>>> op.inputs.num_surfaces(my_num_surfaces)
property mesh#

Allows to connect mesh input to the operator.

Mesh to compute the iso-surface from. used when not given through the support of the field in pin 0.

Parameters:

my_mesh (MeshedRegion) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> op.inputs.mesh.connect(my_mesh)
>>> # or
>>> op.inputs.mesh(my_mesh)
property slice_surfaces#

Allows to connect slice_surfaces input to the operator.

True: slicing will also take into account shell and skin elements. false: slicing will ignore shell and skin elements. the default is true.

Parameters:

my_slice_surfaces (bool) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> op.inputs.slice_surfaces.connect(my_slice_surfaces)
>>> # or
>>> op.inputs.slice_surfaces(my_slice_surfaces)
property vector_iso_values#

Allows to connect vector_iso_values input to the operator.

If provided, user defined iso_values to compute. if not provided, iso_values are linearly compute between the min and the max of the field of results.

Parameters:

my_vector_iso_values

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> op.inputs.vector_iso_values.connect(my_vector_iso_values)
>>> # or
>>> op.inputs.vector_iso_values(my_vector_iso_values)
connect(inpt)#

Connect any input (an entity or an operator output) to any input pin of this operator. Searches for the input type corresponding to the output.

Parameters:
  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer (E501) – Input of the operator.

  • MeshedRegion (E501) – Input of the operator.

  • MeshesContainer (E501) – Input of the operator.

  • DataSources (E501) – Input of the operator.

  • CyclicSupport (E501) – Input of the operator.

  • Outputs (E501) – Input of the operator.

  • noqa (os.PathLike #) – Input of the operator.

class ansys.dpf.core.operators.mesh.iso_surfaces.OutputsIsoSurfaces(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to get outputs from iso_surfaces operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> # Connect inputs : op.inputs. ...
>>> result_meshes = op.outputs.meshes()
>>> result_fields_container = op.outputs.fields_container()
property meshes#

Allows to get meshes output of the operator

Returns:

my_meshes

Return type:

MeshesContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> # Connect inputs : op.inputs. ...
>>> result_meshes = op.outputs.meshes()
property fields_container#

Allows to get fields_container output of the operator

Returns:

my_fields_container

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.iso_surfaces()
>>> # Connect inputs : op.inputs. ...
>>> result_fields_container = op.outputs.fields_container()