mapdl_split_on_facet_indices#
Autogenerated DPF operator classes.
- class ansys.dpf.core.operators.result.mapdl_split_on_facet_indices.mapdl_split_on_facet_indices(fields_container=None, property_field_new_elements_to_old=None, facet_indices=None, volume_mesh=None, degenerated_tets=None, non_degenerated_tets=None, config=None, server=None)#
Splits each Field in a FieldsContainer defined on the skin elements of a mesh according to the local facets indices of its corresponding solid element. The output FieldsContainer retains the original labels and adds a ‘facet’ label, which indicates at which facet of the solid mesh was the original skin element located. The facet ids are according to MAPDL convention. The scoping of the output Fields reflects the element indices in the solid mesh.
- Parameters:
fields_container (FieldsContainer) – Fields container to split, with generic number of labels (e.g. time, zone, complex…), and the fields of the fieldscontainer will have location elemental and the scoping ids will be the element ids on the skin mesh.
property_field_new_elements_to_old (PropertyField) – This property field provides, for each new face element id (in the scoping), the corresponding 3d volume element index (in the data) it has been extracted from. the 3d volume element id can be found with the element scoping of the input mesh.
facet_indices (PropertyField) – This property field gives, for each new face element id (in the scoping), the corresponding face index on the source 3d volume element. the 3d volume element can be extracted from the previous output.
volume_mesh (MeshedRegion) – The solid support.
degenerated_tets (Scoping, optional) – Elemental scoping of tet elements. if connected, the tets in the scoping are treated as degenerated tets (solid185), and the rest as non- degenerated tets (solid285). pins 185 and 285 are mutually exclusionary (they cannot be connected at the same time), and if none of them is connected, all tets are treated as non-degenerated (solid285).
non_degenerated_tets (Scoping, optional) – Elemental scoping of tet elements. if connected, the tets in the scoping are treated as non-degenerated tets (solid285), and the rest as degenerated tets (solid185). pins 185 and 285 are mutually exclusionary (they cannot be connected at the same time), and if none of them is connected, all tets are treated as non-degenerated (solid285).
- Returns:
fields_container – Output splitted fields containter
- Return type:
Examples
>>> from ansys.dpf import core as dpf
>>> # Instantiate operator >>> op = dpf.operators.result.mapdl_split_on_facet_indices()
>>> # Make input connections >>> my_fields_container = dpf.FieldsContainer() >>> op.inputs.fields_container.connect(my_fields_container) >>> my_property_field_new_elements_to_old = dpf.PropertyField() >>> op.inputs.property_field_new_elements_to_old.connect(my_property_field_new_elements_to_old) >>> my_facet_indices = dpf.PropertyField() >>> op.inputs.facet_indices.connect(my_facet_indices) >>> my_volume_mesh = dpf.MeshedRegion() >>> op.inputs.volume_mesh.connect(my_volume_mesh) >>> my_degenerated_tets = dpf.Scoping() >>> op.inputs.degenerated_tets.connect(my_degenerated_tets) >>> my_non_degenerated_tets = dpf.Scoping() >>> op.inputs.non_degenerated_tets.connect(my_non_degenerated_tets)
>>> # Instantiate operator and connect inputs in one line >>> op = dpf.operators.result.mapdl_split_on_facet_indices( ... fields_container=my_fields_container, ... property_field_new_elements_to_old=my_property_field_new_elements_to_old, ... facet_indices=my_facet_indices, ... volume_mesh=my_volume_mesh, ... degenerated_tets=my_degenerated_tets, ... non_degenerated_tets=my_non_degenerated_tets, ... )
>>> # Get output data >>> result_fields_container = op.outputs.fields_container()
- static default_config(server=None)#
Returns the default config of the operator.
This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator.
- Parameters:
server (server.DPFServer, optional) – Server with channel connected to the remote or local instance. When
None
, attempts to use the global server.
- property inputs#
Enables to connect inputs to the operator
- Returns:
inputs
- Return type:
- property outputs#
Enables to get outputs of the operator by evaluating it
- Returns:
outputs
- Return type:
- property config#
Copy of the operator’s current configuration.
You can modify the copy of the configuration and then use
operator.config = new_config
or instantiate an operator with the new configuration as a parameter.For information on an operator’s options, see the documentation for that operator.
- Returns:
Copy of the operator’s current configuration.
- Return type:
Examples
Modify the copy of an operator’s configuration and set it as current config of the operator.
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.math.add() >>> config_add = op.config >>> config_add.set_work_by_index_option(True) >>> op.config = config_add
- connect(pin, inpt, pin_out=0)#
Connect an input on the operator using a pin number.
- Parameters:
pin (int) – Number of the input pin.
inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –
ScopingsContainer – Operator, os.PathLike Object to connect to.
MeshedRegion – Operator, os.PathLike Object to connect to.
MeshesContainer – Operator, os.PathLike Object to connect to.
DataSources – Operator, os.PathLike Object to connect to.
CyclicSupport – Operator, os.PathLike Object to connect to.
dict – Operator, os.PathLike Object to connect to.
Outputs – Operator, os.PathLike Object to connect to.
pin_out (int, optional) – If the input is an operator, the output pin of the input operator. The default is
0
.
Examples
Compute the minimum of displacement by chaining the
"U"
and"min_max_fc"
operators.>>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> data_src = dpf.DataSources(examples.find_multishells_rst()) >>> disp_op = dpf.operators.result.displacement() >>> disp_op.inputs.data_sources(data_src) >>> max_fc_op = dpf.operators.min_max.min_max_fc() >>> max_fc_op.inputs.connect(disp_op.outputs) >>> max_field = max_fc_op.outputs.field_max() >>> max_field.data DPFArray([[0.59428386, 0.00201751, 0.0006032 ]]...
- connect_operator_as_input(pin, op)#
Connects an operator as an input on a pin. :type pin: :param pin: Number of the output pin. The default is
0
. :type pin: int :type op: :param op: Requested type of the output. The default isNone
. :type op:ansys.dpf.core.dpf_operator.Operator
- eval(pin=None)#
Evaluate this operator.
- Parameters:
pin (int) – Number of the output pin. The default is
None
.- Returns:
output – Returns the first output of the operator by default and the output of a given pin when specified. Or, it only evaluates the operator without output.
- Return type:
Examples
Use the
eval
method.>>> from ansys.dpf import core as dpf >>> import ansys.dpf.core.operators.math as math >>> from ansys.dpf.core import examples >>> data_src = dpf.DataSources(examples.find_multishells_rst()) >>> disp_op = dpf.operators.result.displacement() >>> disp_op.inputs.data_sources(data_src) >>> normfc = math.norm_fc(disp_op).eval()
- get_output(pin=0, output_type=None)#
Retrieve the output of the operator on the pin number.
To activate the progress bar for server version higher or equal to 3.0, use
my_op.progress_bar=True
- Parameters:
pin (int, optional) – Number of the output pin. The default is
0
.output_type (
ansys.dpf.core.common.types
, type, optional) – Requested type of the output. The default isNone
.
- Returns:
Output of the operator.
- Return type:
type
- static operator_specification(op_name, server=None)#
Documents an Operator with its description (what the Operator does), its inputs and outputs and some properties
- property progress_bar: bool#
With this property, the user can choose to print a progress bar when the operator’s output is requested, default is False
- run()#
Evaluate this operator.
- property specification#
Returns the Specification (or documentation) of this Operator
- Return type:
- class ansys.dpf.core.operators.result.mapdl_split_on_facet_indices.InputsMapdlSplitOnFacetIndices(op: ansys.dpf.core.dpf_operator.Operator)#
Intermediate class used to connect user inputs to mapdl_split_on_facet_indices operator.
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> my_fields_container = dpf.FieldsContainer() >>> op.inputs.fields_container.connect(my_fields_container) >>> my_property_field_new_elements_to_old = dpf.PropertyField() >>> op.inputs.property_field_new_elements_to_old.connect(my_property_field_new_elements_to_old) >>> my_facet_indices = dpf.PropertyField() >>> op.inputs.facet_indices.connect(my_facet_indices) >>> my_volume_mesh = dpf.MeshedRegion() >>> op.inputs.volume_mesh.connect(my_volume_mesh) >>> my_degenerated_tets = dpf.Scoping() >>> op.inputs.degenerated_tets.connect(my_degenerated_tets) >>> my_non_degenerated_tets = dpf.Scoping() >>> op.inputs.non_degenerated_tets.connect(my_non_degenerated_tets)
- property fields_container#
Allows to connect fields_container input to the operator.
Fields container to split, with generic number of labels (e.g. time, zone, complex…), and the fields of the fieldscontainer will have location elemental and the scoping ids will be the element ids on the skin mesh.
- Parameters:
my_fields_container (FieldsContainer) –
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> op.inputs.fields_container.connect(my_fields_container) >>> # or >>> op.inputs.fields_container(my_fields_container)
- property property_field_new_elements_to_old#
Allows to connect property_field_new_elements_to_old input to the operator.
This property field provides, for each new face element id (in the scoping), the corresponding 3d volume element index (in the data) it has been extracted from. the 3d volume element id can be found with the element scoping of the input mesh.
- Parameters:
my_property_field_new_elements_to_old (PropertyField) –
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> op.inputs.property_field_new_elements_to_old.connect(my_property_field_new_elements_to_old) >>> # or >>> op.inputs.property_field_new_elements_to_old(my_property_field_new_elements_to_old)
- property facet_indices#
Allows to connect facet_indices input to the operator.
This property field gives, for each new face element id (in the scoping), the corresponding face index on the source 3d volume element. the 3d volume element can be extracted from the previous output.
- Parameters:
my_facet_indices (PropertyField) –
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> op.inputs.facet_indices.connect(my_facet_indices) >>> # or >>> op.inputs.facet_indices(my_facet_indices)
- property volume_mesh#
Allows to connect volume_mesh input to the operator.
The solid support.
- Parameters:
my_volume_mesh (MeshedRegion) –
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> op.inputs.volume_mesh.connect(my_volume_mesh) >>> # or >>> op.inputs.volume_mesh(my_volume_mesh)
- property degenerated_tets#
Allows to connect degenerated_tets input to the operator.
Elemental scoping of tet elements. if connected, the tets in the scoping are treated as degenerated tets (solid185), and the rest as non- degenerated tets (solid285). pins 185 and 285 are mutually exclusionary (they cannot be connected at the same time), and if none of them is connected, all tets are treated as non-degenerated (solid285).
- Parameters:
my_degenerated_tets (Scoping) –
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> op.inputs.degenerated_tets.connect(my_degenerated_tets) >>> # or >>> op.inputs.degenerated_tets(my_degenerated_tets)
- property non_degenerated_tets#
Allows to connect non_degenerated_tets input to the operator.
Elemental scoping of tet elements. if connected, the tets in the scoping are treated as non-degenerated tets (solid285), and the rest as degenerated tets (solid185). pins 185 and 285 are mutually exclusionary (they cannot be connected at the same time), and if none of them is connected, all tets are treated as non-degenerated (solid285).
- Parameters:
my_non_degenerated_tets (Scoping) –
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> op.inputs.non_degenerated_tets.connect(my_non_degenerated_tets) >>> # or >>> op.inputs.non_degenerated_tets(my_non_degenerated_tets)
- connect(inpt)#
Connect any input (an entity or an operator output) to any input pin of this operator. Searches for the input type corresponding to the output.
- Parameters:
inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –
ScopingsContainer (E501) – Input of the operator.
MeshedRegion (E501) – Input of the operator.
MeshesContainer (E501) – Input of the operator.
DataSources (E501) – Input of the operator.
CyclicSupport (E501) – Input of the operator.
Outputs (E501) – Input of the operator.
noqa (os.PathLike #) – Input of the operator.
- class ansys.dpf.core.operators.result.mapdl_split_on_facet_indices.OutputsMapdlSplitOnFacetIndices(op: ansys.dpf.core.dpf_operator.Operator)#
Intermediate class used to get outputs from mapdl_split_on_facet_indices operator.
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> # Connect inputs : op.inputs. ... >>> result_fields_container = op.outputs.fields_container()
- property fields_container#
Allows to get fields_container output of the operator
- Returns:
my_fields_container
- Return type:
Examples
>>> from ansys.dpf import core as dpf >>> op = dpf.operators.result.mapdl_split_on_facet_indices() >>> # Connect inputs : op.inputs. ... >>> result_fields_container = op.outputs.fields_container()