Field#

class ansys.dpf.core.field.Field(nentities=0, nature=natures.vector, location='Nodal', field=None, server=None)#

Represents the main simulation data container.

This can be evaluated data from the Operator class or created by a factory and directly by an instance of this class.

A field’s data is always associated to its scoping (entities associated to each value) and support (subset of the model where the data is), making the field a self-describing piece of data.

The field’s scoping defines the order of the data, for example: the first ID in the scoping identifies to which entity the first entity data belongs.

For more information, see the Fields container and fields documentation section.

Parameters:
  • nentities (int, optional) – Number of entities reserved. The default is 0.

  • nature (ansys.dpf.core.common.natures, optional) – Nature of the field.

  • location (str, optional) –

    Location of the field. Options are in locations

    • dpf.locations.nodal

    • dpf.locations.elemental

    • dpf.locations.elemental_nodal

  • field (Field, ansys.grpc.dpf.field_pb2.Field, ctypes.c_void_p, optional) – Field message generated from a gRPC stub, or returned by DPF’s C clients.

  • server (ansys.dpf.core.server, optional) – Server with the channel connected to the remote or local instance. The default is None, in which case an attempt is made to use the global server.

Examples

Create a field from scratch.

>>> from ansys.dpf.core import fields_factory
>>> from ansys.dpf.core import locations
>>> from ansys.dpf import core as dpf
>>> field_with_classic_api = dpf.Field()
>>> field_with_classic_api.location = locations.nodal
>>> field_with_factory = fields_factory.create_scalar_field(10)

Extract a displacement field from a transient result file.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> len(field)
11460
>>> field.component_count
3
>>> field.elementary_data_count
3820

Create a displacement field.

>>> from ansys.dpf import core as dpf
>>> import numpy as np
>>> my_field = dpf.Field(10, dpf.natures.vector,dpf.locations.nodal)
>>> my_field.data = np.zeros(30)
>>> my_field.scoping.ids = range(1,11)

Set data.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> field.data[2]
DPFArray([-0.00672665, -0.03213735,  0.00016716]...

Accessing data with a custom order.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> ids_order = [2,3]
>>> stress = model.results.stress(mesh_scoping=dpf.Scoping(
...     ids=ids_order, location=dpf.locations.nodal))
>>> fields_container = stress.outputs.fields_container()
>>> field = fields_container[0]
>>> field.scoping.ids
DPFArray([3, 2]...
>>> field.data
DPFArray([[  3755059.33333333,  -2398534.3515625 , -27519072.33333333,
             2194748.65625   ,   8306637.58333333,   2018637.03125   ],
          [  2796852.09375   ,   -992492.62304688,  22519752.625     ,
            -1049027.46875   ,  10846776.1875    ,   4119072.3125    ]]...
>>> field.get_entity_data_by_id(2)
DPFArray([[ 2796852.09375   ,  -992492.62304688, 22519752.625     ,
           -1049027.46875   , 10846776.1875    ,  4119072.3125    ]]...
>>> field.get_entity_data_by_id(3)
DPFArray([[  3755059.33333333,  -2398534.3515625 , -27519072.33333333,
             2194748.65625   ,   8306637.58333333,   2018637.03125   ]]...
as_local_field()#

Create a deep copy of the field that can be accessed and modified locally.

This method allows you to access and modify the local copy of the field without sending a request to the server. It should be used in a with statement so that the local field is released and the data is sent to the server in one action. If it is not used in a with statement, <release_data> Field.release_data() should be used to update the field.

Warning

If this as_local_field method is not used as a context manager in a with statement or if the method release_data() is not called, the data will not be updated.

Returns:

local_field

Return type:

Field

Examples

>>> from ansys.dpf import core as dpf
>>> num_entities = 3
>>> field_to_local = dpf.fields_factory.create_3d_vector_field(num_entities, location=dpf.locations.elemental_nodal)
>>> with field_to_local.as_local_field() as f:
...     for i in range(1,num_entities+1):
...         f.append([[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]],i)
...         f.get_entity_data(i-1),[[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]]
(DPFArray([[0.1, 0.2, 0.3],
          [0.1, 0.2, 0.3]]), [[0.1, 0.2, 0.3], [0.1, 0.2, 0.3]])
(DPFArray([[0.2, 0.4, 0.6],
          [0.2, 0.4, 0.6]]), [[0.2, 0.4, 0.6], [0.2, 0.4, 0.6]])
(DPFArray([[0.3, 0.6, 0.9],
          [0.3, 0.6, 0.9]]), [[0.30000000000000004, 0.6000000000000001, 0.8999999999999999], [0.30000000000000004, 0.6000000000000001, 0.8999999999999999]])
property location#

Field location.

Returns:

Location string, Options are in locations.

Return type:

str

Examples

Location for a stress field evaluated at nodes.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> model = dpf.Model(examples.download_transient_result())
>>> s_op = model.results.stress()
>>> s_fc = s_op.outputs.fields_container()
>>> field = s_fc[0]
>>> field.location
'ElementalNodal'
property component_count#

Number of components in each elementary data of the field.

Returns:

Number of components in each elementary data of the field.

Return type:

int

property elementary_data_count#

Number of elementary data in the field.

Returns:

Number of elementary data in the field.

Return type:

int

property size#

Length of the data vector.

The length is equal to the number of elementary data times the number of components.

Returns:

Length of the data vector.

Return type:

int

property shell_layers#

Order of the shell layers.

Return type:

ansys.dpf.core.common.shell_layers

get_entity_data(index: int)#

Retrieves the elementary data of the scoping’s index in an array.

Return type:

numpy.ndarray

Examples

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> stress_op = model.results.stress()
>>> fields_container = stress_op.outputs.fields_container()
>>> fields_container[0].get_entity_data(0)
DPFArray([[-3.27795062e+05,  1.36012200e+06,  1.49090608e+08,
        -4.88688900e+06,  1.43038560e+07,  1.65455040e+07],
       [-4.63817550e+06,  1.29312225e+06,  1.20411832e+08,
        -6.06617800e+06,  2.34829700e+07,  1.77231120e+07],
       [-2.35684860e+07, -3.53474400e+07,  2.01501168e+08,
        -5.23361700e+06, -2.88789280e+07, -6.16478200e+06],
       [-3.92756960e+07, -2.72369280e+07,  1.81454016e+08,
        -3.75441450e+06, -3.62480300e+06, -3.26075620e+07],
       [ 1.63554530e+07,  2.83190520e+07,  1.05084256e+08,
        -1.30219020e+07,  5.19906719e+05,  8.82430200e+06],
       [ 1.80755620e+07,  5.25578750e+06,  7.76211600e+07,
        -7.53063750e+06,  2.44717000e+06,  2.92675125e+06],
       [ 9.25567760e+07,  8.15244320e+07,  2.77157632e+08,
        -1.48489875e+06,  5.89250600e+07,  2.05608920e+07],
       [ 6.70443680e+07,  8.70343440e+07,  2.73050464e+08,
        -2.48670150e+06,  1.52268930e+07,  6.09583280e+07]]...
get_entity_data_by_id(id: int)#

Retrieve the data of the scoping’s ID in the parameter of the field in an array.

Returns:

Data based on the scoping ID.

Return type:

numpy.ndarray

Examples

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> stress_op = model.results.stress()
>>> fields_container = stress_op.outputs.fields_container()
>>> fields_container[0].get_entity_data_by_id(391)
DPFArray([[-3.27795062e+05,  1.36012200e+06,  1.49090608e+08,
        -4.88688900e+06,  1.43038560e+07,  1.65455040e+07],
       [-4.63817550e+06,  1.29312225e+06,  1.20411832e+08,
        -6.06617800e+06,  2.34829700e+07,  1.77231120e+07],
       [-2.35684860e+07, -3.53474400e+07,  2.01501168e+08,
        -5.23361700e+06, -2.88789280e+07, -6.16478200e+06],
       [-3.92756960e+07, -2.72369280e+07,  1.81454016e+08,
        -3.75441450e+06, -3.62480300e+06, -3.26075620e+07],
       [ 1.63554530e+07,  2.83190520e+07,  1.05084256e+08,
        -1.30219020e+07,  5.19906719e+05,  8.82430200e+06],
       [ 1.80755620e+07,  5.25578750e+06,  7.76211600e+07,
        -7.53063750e+06,  2.44717000e+06,  2.92675125e+06],
       [ 9.25567760e+07,  8.15244320e+07,  2.77157632e+08,
        -1.48489875e+06,  5.89250600e+07,  2.05608920e+07],
       [ 6.70443680e+07,  8.70343440e+07,  2.73050464e+08,
        -2.48670150e+06,  1.52268930e+07,  6.09583280e+07]]...
append(data, scopingid)#

Add an entity data to the existing data.

Parameters:
  • data (list of int, double, or array) – Data in the entity.

  • scopingid (int) – ID of the scoping.

Examples

>>> from ansys.dpf.core import fields_factory
>>> field = fields_factory.create_3d_vector_field(2)
>>> field.append([1.,2.,3.],1)
>>> field.append([1.,2.,3.],2)
>>> field.data
DPFArray([[1., 2., 3.],
       [1., 2., 3.]]...
>>> field.scoping.ids

...[1, 2]...
to_nodal()#

Convert the field to one with a Nodal location.

This method is valid only when the field’s current location is ElementalNodal or Elemental.

Returns:

nodal_field – with location=='Nodal'.

Return type:

Field

plot(shell_layers=None, deform_by=None, scale_factor=1.0, **kwargs)#

Plot the field or fields container on the mesh support if it exists.

Warning

This method is primarily added out of convenience as plotting directly from the field can be slower than extracting the meshed region and plotting the field on top of that. It is more efficient to plot with:

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> mesh = model.metadata.meshed_region
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> mesh.plot(field)
Parameters:
  • shell_layers (shell_layers, optional) – Enum used to set the shell layers if the model to plot contains shell elements. The default is None.

  • deform_by (Field, Result, Operator, optional) – Used to deform the plotted mesh. Must output a 3D vector field. Defaults to None.

  • scale_factor (float, optional) – Scaling factor to apply when warping the mesh. Defaults to 1.0.

  • **kwargs (optional) – Additional keyword arguments for the plotter. For additional keyword arguments, see help(pyvista.plot).

resize(nentities, datasize)#

Allocate memory.

Parameters:
  • nentities (int) – Number of IDs in the scoping.

  • datasize (int) – Size of the data vector.

property unit#

Units for the field.

Returns:

Units for the field.

Return type:

str

Examples

Units for a displacement field.

>>> from ansys.dpf import core as dpf
>>> my_field = dpf.Field(10, dpf.natures.vector,dpf.locations.nodal)
>>> my_field.unit = "m"
>>> my_field.unit
'm'
property dimensionality#

Dimensionality represents the shape of the elementary data contained in the field.

Returns:

dimensionality – Nature and size of the elementary data.

Return type:

ansys.dpf.core.dimensionality.Dimensionality

property name#

Name of the field.

property field_definition#

Field information, including its location, unit, dimensionality, and shell layers.

Return type:

ansys.dpf.core.field_definition.FieldDefinition

property time_freq_support#

Time frequency support of the field.

Return type:

ansys.dpf.core.time_freq_support.TimeFreqSupport

property meshed_region#

Meshed region of the field.

Return type:

ansys.dpf.core.meshed_region.MeshedRegion

property data#

Data in the field as an array.

Returns:

Data in the field.

Return type:

numpy.ndarray

Notes

Print a progress bar.

property data_as_list#

Data in the field as a Python list.

Returns:

List of the data in the field.

Return type:

List

Notes

Print a progress bar.

Examples

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> # field.data_as_list
property elementary_data_shape#

Numpy-like shape of the field.

property scoping#

Scoping specifying where the data is.

Each entity data is on a given scoping ID.

Returns:

scoping

Return type:

ansys.dpf.core.scoping.Scoping

Examples

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> stress_op = model.results.stress()
>>> fields_container = stress_op.outputs.fields_container()
>>> scoping = fields_container[0].scoping
>>> scoping.location
'Elemental'
>>> scoping.id(3)
586
>>> #The fourth elementary data of the field corresponds to
>>> #the element id number 586 in the mesh
property shape#

Numpy-like shape of the field.

Return type:

tuple

Examples

Shape of a stress field.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> model = dpf.Model(examples.download_transient_result())
>>> s_op =model.results.stress()
>>> s_fc = s_op.outputs.fields_container()
>>> field = s_fc[0]
>>> field.shape
(5720, 6)
min()#

Retrieve the component-wise minimum over this field.

Returns:

min – Component-wise minimum field.

Return type:

Field

max()#

Retrieve the component-wise maximum over this field.

Returns:

max – Component-wise maximum field.

Return type:

Field

deep_copy(server=None)#

Create a deep copy of the field’s data on a given server.

This method can be useful for passing data from one server instance to another.

Parameters:

server (ansys.dpf.core.server, optional) – Server with the channel connected to the remote or local instance. The default is None, in which case an attempt is made to use the global server.

Returns:

field_copy

Return type:

Field

Examples

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> other_server = dpf.start_local_server(as_global=False)
>>> deep_copy = field.deep_copy(server=other_server)