mesh_provider#

Autogenerated DPF operator classes.

class ansys.dpf.core.operators.mesh.mesh_provider.mesh_provider(time_scoping=None, streams_container=None, data_sources=None, read_cyclic=None, region_scoping=None, laziness=None, config=None, server=None)#

Reads a mesh from result files.

Parameters:
  • time_scoping (int, optional) – Optional time/frequency set id of the mesh, supported for adaptative meshes.

  • streams_container (StreamsContainer, optional) – Result file container allowed to be kept open to cache data

  • data_sources (DataSources) – Result file path container, used if no streams are set

  • read_cyclic (int, optional) – If 1, cyclic symmetry is ignored. if 2, cyclic expansion is done (default is 1).

  • region_scoping (Scoping or int, optional) – Region id (integer) or vector of region ids with one entity (vector) or region scoping with one id (scoping) (region corresponds to zone for fluid results or part for lsdyna results).

  • laziness (DataTree, optional) – Configurate whether lazy evaluation can be performed and to what extent. supported attributes are: - “num_named_selections”->num named selection to read (-1 is all, int32, default si -1), careful: the other named selections will not be available, use mesh_property_provider operator to read them. - all mesh property fields “mat”, “named_selection”, “apdl_element_type”, “section”-> if set to 1 these properties will not be read and a workflow will be bounded to the properties to be evaluated on demand, with 0 they are read (default is 0). - “all_available_properties” option set to 0 will return all possible properties

Returns:

mesh

Return type:

MeshedRegion

Examples

>>> from ansys.dpf import core as dpf
>>> # Instantiate operator
>>> op = dpf.operators.mesh.mesh_provider()
>>> # Make input connections
>>> my_time_scoping = int()
>>> op.inputs.time_scoping.connect(my_time_scoping)
>>> my_streams_container = dpf.StreamsContainer()
>>> op.inputs.streams_container.connect(my_streams_container)
>>> my_data_sources = dpf.DataSources()
>>> op.inputs.data_sources.connect(my_data_sources)
>>> my_read_cyclic = int()
>>> op.inputs.read_cyclic.connect(my_read_cyclic)
>>> my_region_scoping = dpf.Scoping()
>>> op.inputs.region_scoping.connect(my_region_scoping)
>>> my_laziness = dpf.DataTree()
>>> op.inputs.laziness.connect(my_laziness)
>>> # Instantiate operator and connect inputs in one line
>>> op = dpf.operators.mesh.mesh_provider(
...     time_scoping=my_time_scoping,
...     streams_container=my_streams_container,
...     data_sources=my_data_sources,
...     read_cyclic=my_read_cyclic,
...     region_scoping=my_region_scoping,
...     laziness=my_laziness,
... )
>>> # Get output data
>>> result_mesh = op.outputs.mesh()
static default_config(server=None)#

Returns the default config of the operator.

This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator.

Parameters:

server (server.DPFServer, optional) – Server with channel connected to the remote or local instance. When None, attempts to use the global server.

property inputs#

Enables to connect inputs to the operator

Returns:

inputs

Return type:

InputsMeshProvider

property outputs#

Enables to get outputs of the operator by evaluating it

Returns:

outputs

Return type:

OutputsMeshProvider

property config#

Copy of the operator’s current configuration.

You can modify the copy of the configuration and then use operator.config = new_config or instantiate an operator with the new configuration as a parameter.

For information on an operator’s options, see the documentation for that operator.

Returns:

Copy of the operator’s current configuration.

Return type:

ansys.dpf.core.config.Config

Examples

Modify the copy of an operator’s configuration and set it as current config of the operator.

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.add()
>>> config_add = op.config
>>> config_add.set_work_by_index_option(True)
>>> op.config = config_add
connect(pin, inpt, pin_out=0)#

Connect an input on the operator using a pin number.

Parameters:
  • pin (int) – Number of the input pin.

  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer – Operator, os.PathLike Object to connect to.

  • MeshedRegion – Operator, os.PathLike Object to connect to.

  • MeshesContainer – Operator, os.PathLike Object to connect to.

  • DataSources – Operator, os.PathLike Object to connect to.

  • CyclicSupport – Operator, os.PathLike Object to connect to.

  • dict – Operator, os.PathLike Object to connect to.

  • Outputs – Operator, os.PathLike Object to connect to.

  • pin_out (int, optional) – If the input is an operator, the output pin of the input operator. The default is 0.

Examples

Compute the minimum of displacement by chaining the "U" and "min_max_fc" operators.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> max_fc_op = dpf.operators.min_max.min_max_fc()
>>> max_fc_op.inputs.connect(disp_op.outputs)
>>> max_field = max_fc_op.outputs.field_max()
>>> max_field.data
DPFArray([[0.59428386, 0.00201751, 0.0006032 ]]...
connect_operator_as_input(pin, op)#

Connects an operator as an input on a pin. :type pin: :param pin: Number of the output pin. The default is 0. :type pin: int :type op: :param op: Requested type of the output. The default is None. :type op: ansys.dpf.core.dpf_operator.Operator

eval(pin=None)#

Evaluate this operator.

Parameters:

pin (int) – Number of the output pin. The default is None.

Returns:

output – Returns the first output of the operator by default and the output of a given pin when specified. Or, it only evaluates the operator without output.

Return type:

FieldsContainer, Field, MeshedRegion, Scoping

Examples

Use the eval method.

>>> from ansys.dpf import core as dpf
>>> import ansys.dpf.core.operators.math as math
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> normfc = math.norm_fc(disp_op).eval()
get_output(pin=0, output_type=None)#

Retrieve the output of the operator on the pin number.

To activate the progress bar for server version higher or equal to 3.0, use my_op.progress_bar=True

Parameters:
  • pin (int, optional) – Number of the output pin. The default is 0.

  • output_type (ansys.dpf.core.common.types, type, optional) – Requested type of the output. The default is None.

Returns:

Output of the operator.

Return type:

type

static operator_specification(op_name, server=None)#

Documents an Operator with its description (what the Operator does), its inputs and outputs and some properties

property progress_bar: bool#

With this property, the user can choose to print a progress bar when the operator’s output is requested, default is False

run()#

Evaluate this operator.

property specification#

Returns the Specification (or documentation) of this Operator

Return type:

Specification

class ansys.dpf.core.operators.mesh.mesh_provider.InputsMeshProvider(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to connect user inputs to mesh_provider operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> my_time_scoping = int()
>>> op.inputs.time_scoping.connect(my_time_scoping)
>>> my_streams_container = dpf.StreamsContainer()
>>> op.inputs.streams_container.connect(my_streams_container)
>>> my_data_sources = dpf.DataSources()
>>> op.inputs.data_sources.connect(my_data_sources)
>>> my_read_cyclic = int()
>>> op.inputs.read_cyclic.connect(my_read_cyclic)
>>> my_region_scoping = dpf.Scoping()
>>> op.inputs.region_scoping.connect(my_region_scoping)
>>> my_laziness = dpf.DataTree()
>>> op.inputs.laziness.connect(my_laziness)
property time_scoping#

Allows to connect time_scoping input to the operator.

Optional time/frequency set id of the mesh, supported for adaptative meshes.

Parameters:

my_time_scoping (int) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> op.inputs.time_scoping.connect(my_time_scoping)
>>> # or
>>> op.inputs.time_scoping(my_time_scoping)
property streams_container#

Allows to connect streams_container input to the operator.

Result file container allowed to be kept open to cache data

Parameters:

my_streams_container (StreamsContainer) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> op.inputs.streams_container.connect(my_streams_container)
>>> # or
>>> op.inputs.streams_container(my_streams_container)
property data_sources#

Allows to connect data_sources input to the operator.

Result file path container, used if no streams are set

Parameters:

my_data_sources (DataSources) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> op.inputs.data_sources.connect(my_data_sources)
>>> # or
>>> op.inputs.data_sources(my_data_sources)
property read_cyclic#

Allows to connect read_cyclic input to the operator.

If 1, cyclic symmetry is ignored. if 2, cyclic expansion is done (default is 1).

Parameters:

my_read_cyclic (int) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> op.inputs.read_cyclic.connect(my_read_cyclic)
>>> # or
>>> op.inputs.read_cyclic(my_read_cyclic)
property region_scoping#

Allows to connect region_scoping input to the operator.

Region id (integer) or vector of region ids with one entity (vector) or region scoping with one id (scoping) (region corresponds to zone for fluid results or part for lsdyna results).

Parameters:

my_region_scoping (Scoping or int) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> op.inputs.region_scoping.connect(my_region_scoping)
>>> # or
>>> op.inputs.region_scoping(my_region_scoping)
property laziness#

Allows to connect laziness input to the operator.

Configurate whether lazy evaluation can be performed and to what extent. supported attributes are: - “num_named_selections”->num named selection to read (-1 is all, int32, default si -1), careful: the other named selections will not be available, use mesh_property_provider operator to read them. - all mesh property fields “mat”, “named_selection”, “apdl_element_type”, “section”-> if set to 1 these properties will not be read and a workflow will be bounded to the properties to be evaluated on demand, with 0 they are read (default is 0). - “all_available_properties” option set to 0 will return all possible properties

Parameters:

my_laziness (DataTree) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> op.inputs.laziness.connect(my_laziness)
>>> # or
>>> op.inputs.laziness(my_laziness)
connect(inpt)#

Connect any input (an entity or an operator output) to any input pin of this operator. Searches for the input type corresponding to the output.

Parameters:
  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer (E501) – Input of the operator.

  • MeshedRegion (E501) – Input of the operator.

  • MeshesContainer (E501) – Input of the operator.

  • DataSources (E501) – Input of the operator.

  • CyclicSupport (E501) – Input of the operator.

  • Outputs (E501) – Input of the operator.

  • noqa (os.PathLike #) – Input of the operator.

class ansys.dpf.core.operators.mesh.mesh_provider.OutputsMeshProvider(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to get outputs from mesh_provider operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> # Connect inputs : op.inputs. ...
>>> result_mesh = op.outputs.mesh()
property mesh#

Allows to get mesh output of the operator

Returns:

my_mesh

Return type:

MeshedRegion

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.mesh.mesh_provider()
>>> # Connect inputs : op.inputs. ...
>>> result_mesh = op.outputs.mesh()