class ansys.dpf.core.operators.math.modal_damping_ratio.modal_damping_ratio(natural_freq=None, const_ratio=None, ratio_by_modes=None, m_coefficient=None, k_coefficient=None, config=None, server=None)#

Computes damping ratio for each mode shape as X_i = const + ratio_i + m_coefficient / (2*omega_i) + k_coefficient * omega_i/2.

Parameters:
  • natural_freq (default: None) – Input vector expects natural frequencies.

  • const_ratio (float, optional) – Constant modal damping ratio

  • ratio_by_modes (optional) – Modal damping ratio for each mode shape

  • m_coefficient (float) – Global mass matrix multiplier

  • k_coefficient (float) – Global stiffness matrix multiplier

Returns:

field – Field of modal damping ratio.

Return type:

Field

Examples

>>> from ansys.dpf import core as dpf
>>> # Instantiate operator
>>> op = dpf.operators.math.modal_damping_ratio()
>>> # Make input connections
>>> my_natural_freq = dpf.()
>>> op.inputs.natural_freq.connect(my_natural_freq)
>>> my_const_ratio = float()
>>> op.inputs.const_ratio.connect(my_const_ratio)
>>> my_ratio_by_modes = dpf.()
>>> op.inputs.ratio_by_modes.connect(my_ratio_by_modes)
>>> my_m_coefficient = float()
>>> op.inputs.m_coefficient.connect(my_m_coefficient)
>>> my_k_coefficient = float()
>>> op.inputs.k_coefficient.connect(my_k_coefficient)
>>> # Instantiate operator and connect inputs in one line
>>> op = dpf.operators.math.modal_damping_ratio(
...     natural_freq=my_natural_freq,
...     const_ratio=my_const_ratio,
...     ratio_by_modes=my_ratio_by_modes,
...     m_coefficient=my_m_coefficient,
...     k_coefficient=my_k_coefficient,
... )
>>> # Get output data
>>> result_field = op.outputs.field()
static default_config(server=None)#

Returns the default config of the operator.

This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator.

Parameters:

server (server.DPFServer, optional) – Server with channel connected to the remote or local instance. When None, attempts to use the global server.

property inputs#

Enables to connect inputs to the operator

Returns:

inputs

Return type:

InputsModalDampingRatio

property outputs#

Enables to get outputs of the operator by evaluating it

Returns:

outputs

Return type:

OutputsModalDampingRatio

property config#

Copy of the operator’s current configuration.

You can modify the copy of the configuration and then use operator.config = new_config or instantiate an operator with the new configuration as a parameter.

For information on an operator’s options, see the documentation for that operator.

Returns:

Copy of the operator’s current configuration.

Return type:

ansys.dpf.core.config.Config

Examples

Modify the copy of an operator’s configuration and set it as current config of the operator.

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.add()
>>> config_add = op.config
>>> config_add.set_work_by_index_option(True)
>>> op.config = config_add
connect(pin, inpt, pin_out=0)#

Connect an input on the operator using a pin number.

Parameters:
  • pin (int) – Number of the input pin.

  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer – Operator, os.PathLike Object to connect to.

  • MeshedRegion – Operator, os.PathLike Object to connect to.

  • MeshesContainer – Operator, os.PathLike Object to connect to.

  • DataSources – Operator, os.PathLike Object to connect to.

  • CyclicSupport – Operator, os.PathLike Object to connect to.

  • dict – Operator, os.PathLike Object to connect to.

  • Outputs – Operator, os.PathLike Object to connect to.

  • pin_out (int, optional) – If the input is an operator, the output pin of the input operator. The default is 0.

Examples

Compute the minimum of displacement by chaining the "U" and "min_max_fc" operators.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> max_fc_op = dpf.operators.min_max.min_max_fc()
>>> max_fc_op.inputs.connect(disp_op.outputs)
>>> max_field = max_fc_op.outputs.field_max()
>>> max_field.data
DPFArray([[0.59428386, 0.00201751, 0.0006032 ]]...
connect_operator_as_input(pin, op)#

Connects an operator as an input on a pin. :type pin: :param pin: Number of the output pin. The default is 0. :type pin: int :type op: :param op: Requested type of the output. The default is None. :type op: ansys.dpf.core.dpf_operator.Operator

eval(pin=None)#

Evaluate this operator.

Parameters:

pin (int) – Number of the output pin. The default is None.

Returns:

output – Returns the first output of the operator by default and the output of a given pin when specified. Or, it only evaluates the operator without output.

Return type:

FieldsContainer, Field, MeshedRegion, Scoping

Examples

Use the eval method.

>>> from ansys.dpf import core as dpf
>>> import ansys.dpf.core.operators.math as math
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> normfc = math.norm_fc(disp_op).eval()
get_output(pin=0, output_type=None)#

Retrieve the output of the operator on the pin number.

To activate the progress bar for server version higher or equal to 3.0, use my_op.progress_bar=True

Parameters:
  • pin (int, optional) – Number of the output pin. The default is 0.

  • output_type (ansys.dpf.core.common.types, type, optional) – Requested type of the output. The default is None.

Returns:

Output of the operator.

Return type:

type

static operator_specification(op_name, server=None)#

Documents an Operator with its description (what the Operator does), its inputs and outputs and some properties

property progress_bar: bool#

With this property, the user can choose to print a progress bar when the operator’s output is requested, default is False

run()#

Evaluate this operator.

property specification#

Returns the Specification (or documentation) of this Operator

Return type:

Specification

class ansys.dpf.core.operators.math.modal_damping_ratio.InputsModalDampingRatio(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to connect user inputs to modal_damping_ratio operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> my_natural_freq = dpf.()
>>> op.inputs.natural_freq.connect(my_natural_freq)
>>> my_const_ratio = float()
>>> op.inputs.const_ratio.connect(my_const_ratio)
>>> my_ratio_by_modes = dpf.()
>>> op.inputs.ratio_by_modes.connect(my_ratio_by_modes)
>>> my_m_coefficient = float()
>>> op.inputs.m_coefficient.connect(my_m_coefficient)
>>> my_k_coefficient = float()
>>> op.inputs.k_coefficient.connect(my_k_coefficient)
property natural_freq#

Allows to connect natural_freq input to the operator.

Input vector expects natural frequencies.

Parameters:

my_natural_freq

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> op.inputs.natural_freq.connect(my_natural_freq)
>>> # or
>>> op.inputs.natural_freq(my_natural_freq)
property const_ratio#

Allows to connect const_ratio input to the operator.

Constant modal damping ratio

Parameters:

my_const_ratio (float) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> op.inputs.const_ratio.connect(my_const_ratio)
>>> # or
>>> op.inputs.const_ratio(my_const_ratio)
property ratio_by_modes#

Allows to connect ratio_by_modes input to the operator.

Modal damping ratio for each mode shape

Parameters:

my_ratio_by_modes

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> op.inputs.ratio_by_modes.connect(my_ratio_by_modes)
>>> # or
>>> op.inputs.ratio_by_modes(my_ratio_by_modes)
property m_coefficient#

Allows to connect m_coefficient input to the operator.

Global mass matrix multiplier

Parameters:

my_m_coefficient (float) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> op.inputs.m_coefficient.connect(my_m_coefficient)
>>> # or
>>> op.inputs.m_coefficient(my_m_coefficient)
property k_coefficient#

Allows to connect k_coefficient input to the operator.

Global stiffness matrix multiplier

Parameters:

my_k_coefficient (float) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> op.inputs.k_coefficient.connect(my_k_coefficient)
>>> # or
>>> op.inputs.k_coefficient(my_k_coefficient)
connect(inpt)#

Connect any input (an entity or an operator output) to any input pin of this operator. Searches for the input type corresponding to the output.

Parameters:
  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer (E501) – Input of the operator.

  • MeshedRegion (E501) – Input of the operator.

  • MeshesContainer (E501) – Input of the operator.

  • DataSources (E501) – Input of the operator.

  • CyclicSupport (E501) – Input of the operator.

  • Outputs (E501) – Input of the operator.

  • noqa (os.PathLike #) – Input of the operator.

class ansys.dpf.core.operators.math.modal_damping_ratio.OutputsModalDampingRatio(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to get outputs from modal_damping_ratio operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> # Connect inputs : op.inputs. ...
>>> result_field = op.outputs.field()
property field#

Allows to get field output of the operator

Returns:

my_field

Return type:

Field

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.modal_damping_ratio()
>>> # Connect inputs : op.inputs. ...
>>> result_field = op.outputs.field()