force_summation#

Autogenerated DPF operator classes.

class ansys.dpf.core.operators.averaging.force_summation.force_summation(time_scoping=None, nodal_scoping=None, elemental_scoping=None, data_sources=None, force_type=None, spoint=None, config=None, server=None)#

Computes the sum of elemental forces contribution on a set of nodes in Global Coordinate System. Equivalent to MAPDL FSUM & NFORCE commands. Supports Static, Transient, Modal & Harmonic analysis for thermal and structural degrees of freedom.

Parameters:
  • time_scoping (Scoping, optional) – Default = all time steps

  • nodal_scoping (Scoping, optional) – Nodal scoping. set of nodes in which elemental contribution forces will be accumulated (default = all nodes)

  • elemental_scoping (Scoping, optional) – Elemental scoping. set of elements contributing to the force calcuation. (default = all elements)

  • data_sources (DataSources) –

  • force_type (int, optional) – Type of force to be processed (0 - default: total forces (static, damping, and inertia)., 1: static forces, 2: damping forces, 3: inertia forces)

  • spoint (Field, optional) – Coordinate field of a point for moment summations. defaults to (0,0,0).

Returns:

  • force_accumulation (FieldsContainer)

  • moment_accumulation (FieldsContainer)

  • heat_accumulation (FieldsContainer)

  • forces_on_nodes (FieldsContainer)

  • moments_on_nodes (FieldsContainer)

  • heats_on_nodes (FieldsContainer)

Examples

>>> from ansys.dpf import core as dpf
>>> # Instantiate operator
>>> op = dpf.operators.averaging.force_summation()
>>> # Make input connections
>>> my_time_scoping = dpf.Scoping()
>>> op.inputs.time_scoping.connect(my_time_scoping)
>>> my_nodal_scoping = dpf.Scoping()
>>> op.inputs.nodal_scoping.connect(my_nodal_scoping)
>>> my_elemental_scoping = dpf.Scoping()
>>> op.inputs.elemental_scoping.connect(my_elemental_scoping)
>>> my_data_sources = dpf.DataSources()
>>> op.inputs.data_sources.connect(my_data_sources)
>>> my_force_type = int()
>>> op.inputs.force_type.connect(my_force_type)
>>> my_spoint = dpf.Field()
>>> op.inputs.spoint.connect(my_spoint)
>>> # Instantiate operator and connect inputs in one line
>>> op = dpf.operators.averaging.force_summation(
...     time_scoping=my_time_scoping,
...     nodal_scoping=my_nodal_scoping,
...     elemental_scoping=my_elemental_scoping,
...     data_sources=my_data_sources,
...     force_type=my_force_type,
...     spoint=my_spoint,
... )
>>> # Get output data
>>> result_force_accumulation = op.outputs.force_accumulation()
>>> result_moment_accumulation = op.outputs.moment_accumulation()
>>> result_heat_accumulation = op.outputs.heat_accumulation()
>>> result_forces_on_nodes = op.outputs.forces_on_nodes()
>>> result_moments_on_nodes = op.outputs.moments_on_nodes()
>>> result_heats_on_nodes = op.outputs.heats_on_nodes()
static default_config(server=None)#

Returns the default config of the operator.

This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator.

Parameters:

server (server.DPFServer, optional) – Server with channel connected to the remote or local instance. When None, attempts to use the global server.

property inputs#

Enables to connect inputs to the operator

Returns:

inputs

Return type:

InputsForceSummation

property outputs#

Enables to get outputs of the operator by evaluating it

Returns:

outputs

Return type:

OutputsForceSummation

property config#

Copy of the operator’s current configuration.

You can modify the copy of the configuration and then use operator.config = new_config or instantiate an operator with the new configuration as a parameter.

For information on an operator’s options, see the documentation for that operator.

Returns:

Copy of the operator’s current configuration.

Return type:

ansys.dpf.core.config.Config

Examples

Modify the copy of an operator’s configuration and set it as current config of the operator.

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.math.add()
>>> config_add = op.config
>>> config_add.set_work_by_index_option(True)
>>> op.config = config_add
connect(pin, inpt, pin_out=0)#

Connect an input on the operator using a pin number.

Parameters:
  • pin (int) – Number of the input pin.

  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer – Operator, os.PathLike Object to connect to.

  • MeshedRegion – Operator, os.PathLike Object to connect to.

  • MeshesContainer – Operator, os.PathLike Object to connect to.

  • DataSources – Operator, os.PathLike Object to connect to.

  • CyclicSupport – Operator, os.PathLike Object to connect to.

  • dict – Operator, os.PathLike Object to connect to.

  • Outputs – Operator, os.PathLike Object to connect to.

  • pin_out (int, optional) – If the input is an operator, the output pin of the input operator. The default is 0.

Examples

Compute the minimum of displacement by chaining the "U" and "min_max_fc" operators.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> max_fc_op = dpf.operators.min_max.min_max_fc()
>>> max_fc_op.inputs.connect(disp_op.outputs)
>>> max_field = max_fc_op.outputs.field_max()
>>> max_field.data
DPFArray([[0.59428386, 0.00201751, 0.0006032 ]]...
connect_operator_as_input(pin, op)#

Connects an operator as an input on a pin. :type pin: :param pin: Number of the output pin. The default is 0. :type pin: int :type op: :param op: Requested type of the output. The default is None. :type op: ansys.dpf.core.dpf_operator.Operator

eval(pin=None)#

Evaluate this operator.

Parameters:

pin (int) – Number of the output pin. The default is None.

Returns:

output – Returns the first output of the operator by default and the output of a given pin when specified. Or, it only evaluates the operator without output.

Return type:

FieldsContainer, Field, MeshedRegion, Scoping

Examples

Use the eval method.

>>> from ansys.dpf import core as dpf
>>> import ansys.dpf.core.operators.math as math
>>> from ansys.dpf.core import examples
>>> data_src = dpf.DataSources(examples.find_multishells_rst())
>>> disp_op = dpf.operators.result.displacement()
>>> disp_op.inputs.data_sources(data_src)
>>> normfc = math.norm_fc(disp_op).eval()
get_output(pin=0, output_type=None)#

Retrieve the output of the operator on the pin number.

To activate the progress bar for server version higher or equal to 3.0, use my_op.progress_bar=True

Parameters:
  • pin (int, optional) – Number of the output pin. The default is 0.

  • output_type (ansys.dpf.core.common.types, type, optional) – Requested type of the output. The default is None.

Returns:

Output of the operator.

Return type:

type

static operator_specification(op_name, server=None)#

Documents an Operator with its description (what the Operator does), its inputs and outputs and some properties

property progress_bar: bool#

With this property, the user can choose to print a progress bar when the operator’s output is requested, default is False

run()#

Evaluate this operator.

property specification#

Returns the Specification (or documentation) of this Operator

Return type:

Specification

class ansys.dpf.core.operators.averaging.force_summation.InputsForceSummation(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to connect user inputs to force_summation operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> my_time_scoping = dpf.Scoping()
>>> op.inputs.time_scoping.connect(my_time_scoping)
>>> my_nodal_scoping = dpf.Scoping()
>>> op.inputs.nodal_scoping.connect(my_nodal_scoping)
>>> my_elemental_scoping = dpf.Scoping()
>>> op.inputs.elemental_scoping.connect(my_elemental_scoping)
>>> my_data_sources = dpf.DataSources()
>>> op.inputs.data_sources.connect(my_data_sources)
>>> my_force_type = int()
>>> op.inputs.force_type.connect(my_force_type)
>>> my_spoint = dpf.Field()
>>> op.inputs.spoint.connect(my_spoint)
property time_scoping#

Allows to connect time_scoping input to the operator.

Default = all time steps

Parameters:

my_time_scoping (Scoping) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> op.inputs.time_scoping.connect(my_time_scoping)
>>> # or
>>> op.inputs.time_scoping(my_time_scoping)
property nodal_scoping#

Allows to connect nodal_scoping input to the operator.

Nodal scoping. set of nodes in which elemental contribution forces will be accumulated (default = all nodes)

Parameters:

my_nodal_scoping (Scoping) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> op.inputs.nodal_scoping.connect(my_nodal_scoping)
>>> # or
>>> op.inputs.nodal_scoping(my_nodal_scoping)
property elemental_scoping#

Allows to connect elemental_scoping input to the operator.

Elemental scoping. set of elements contributing to the force calcuation. (default = all elements)

Parameters:

my_elemental_scoping (Scoping) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> op.inputs.elemental_scoping.connect(my_elemental_scoping)
>>> # or
>>> op.inputs.elemental_scoping(my_elemental_scoping)
property data_sources#

Allows to connect data_sources input to the operator.

Parameters:

my_data_sources (DataSources) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> op.inputs.data_sources.connect(my_data_sources)
>>> # or
>>> op.inputs.data_sources(my_data_sources)
property force_type#

Allows to connect force_type input to the operator.

Type of force to be processed (0 - default: total forces (static, damping, and inertia)., 1: static forces, 2: damping forces, 3: inertia forces)

Parameters:

my_force_type (int) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> op.inputs.force_type.connect(my_force_type)
>>> # or
>>> op.inputs.force_type(my_force_type)
property spoint#

Allows to connect spoint input to the operator.

Coordinate field of a point for moment summations. defaults to (0,0,0).

Parameters:

my_spoint (Field) –

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> op.inputs.spoint.connect(my_spoint)
>>> # or
>>> op.inputs.spoint(my_spoint)
connect(inpt)#

Connect any input (an entity or an operator output) to any input pin of this operator. Searches for the input type corresponding to the output.

Parameters:
  • inpt (str, int, double, bool, list[int], list[float], Field, FieldsContainer, Scoping,) –

  • ScopingsContainer (E501) – Input of the operator.

  • MeshedRegion (E501) – Input of the operator.

  • MeshesContainer (E501) – Input of the operator.

  • DataSources (E501) – Input of the operator.

  • CyclicSupport (E501) – Input of the operator.

  • Outputs (E501) – Input of the operator.

  • noqa (os.PathLike #) – Input of the operator.

class ansys.dpf.core.operators.averaging.force_summation.OutputsForceSummation(op: ansys.dpf.core.dpf_operator.Operator)#

Intermediate class used to get outputs from force_summation operator.

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_force_accumulation = op.outputs.force_accumulation()
>>> result_moment_accumulation = op.outputs.moment_accumulation()
>>> result_heat_accumulation = op.outputs.heat_accumulation()
>>> result_forces_on_nodes = op.outputs.forces_on_nodes()
>>> result_moments_on_nodes = op.outputs.moments_on_nodes()
>>> result_heats_on_nodes = op.outputs.heats_on_nodes()
property force_accumulation#

Allows to get force_accumulation output of the operator

Returns:

my_force_accumulation

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_force_accumulation = op.outputs.force_accumulation()
property moment_accumulation#

Allows to get moment_accumulation output of the operator

Returns:

my_moment_accumulation

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_moment_accumulation = op.outputs.moment_accumulation()
property heat_accumulation#

Allows to get heat_accumulation output of the operator

Returns:

my_heat_accumulation

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_heat_accumulation = op.outputs.heat_accumulation()
property forces_on_nodes#

Allows to get forces_on_nodes output of the operator

Returns:

my_forces_on_nodes

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_forces_on_nodes = op.outputs.forces_on_nodes()
property moments_on_nodes#

Allows to get moments_on_nodes output of the operator

Returns:

my_moments_on_nodes

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_moments_on_nodes = op.outputs.moments_on_nodes()
property heats_on_nodes#

Allows to get heats_on_nodes output of the operator

Returns:

my_heats_on_nodes

Return type:

FieldsContainer

Examples

>>> from ansys.dpf import core as dpf
>>> op = dpf.operators.averaging.force_summation()
>>> # Connect inputs : op.inputs. ...
>>> result_heats_on_nodes = op.outputs.heats_on_nodes()