ansys.dpf.core.operators.result.cyclic_expansion#
- class ansys.dpf.core.operators.result.cyclic_expansion(time_scoping=None, mesh_scoping=None, fields_container=None, harmonic_index=None, bool_rotate_to_global=None, map_size_scoping_out=None, normalization_factor=None, merge_stages=None, cyclic_support=None, sectors_to_expand=None, phi=None, config=None, server=None)#
Bases:
ansys.dpf.core.dpf_operator.Operator
Expand cyclic results from a fieldsContainer for given sets, sectors and scoping (optionals).
- Parameters:
time_scoping (Scoping, optional)
mesh_scoping (ScopingsContainer or Scoping, optional)
fields_container (FieldsContainer) – field container with the base and duplicate sectors
harmonic_index (int, optional)
bool_rotate_to_global (bool, optional) – default is true
map_size_scoping_out (optional) – map provider by scoping adapter
normalization_factor (float, optional)
merge_stages (bool, optional)
cyclic_support (CyclicSupport)
sectors_to_expand (Scoping or ScopingsContainer, optional) – sectors to expand (start at 0), for multistage: use scopings container with ‘stage’ label.
phi (float, optional) – angle phi in degrees (default value 0.0)
- Returns:
fields_container – FieldsContainer filled in
- Return type:
Examples
>>> from ansys.dpf import core as dpf
>>> # Instantiate operator >>> op = dpf.operators.result.cyclic_expansion()
>>> # Make input connections >>> my_time_scoping = dpf.Scoping() >>> op.inputs.time_scoping.connect(my_time_scoping) >>> my_mesh_scoping = dpf.ScopingsContainer() >>> op.inputs.mesh_scoping.connect(my_mesh_scoping) >>> my_fields_container = dpf.FieldsContainer() >>> op.inputs.fields_container.connect(my_fields_container) >>> my_harmonic_index = int() >>> op.inputs.harmonic_index.connect(my_harmonic_index) >>> my_bool_rotate_to_global = bool() >>> op.inputs.bool_rotate_to_global.connect(my_bool_rotate_to_global) >>> my_map_size_scoping_out = dpf.() >>> op.inputs.map_size_scoping_out.connect(my_map_size_scoping_out) >>> my_normalization_factor = float() >>> op.inputs.normalization_factor.connect(my_normalization_factor) >>> my_merge_stages = bool() >>> op.inputs.merge_stages.connect(my_merge_stages) >>> my_cyclic_support = dpf.CyclicSupport() >>> op.inputs.cyclic_support.connect(my_cyclic_support) >>> my_sectors_to_expand = dpf.Scoping() >>> op.inputs.sectors_to_expand.connect(my_sectors_to_expand) >>> my_phi = float() >>> op.inputs.phi.connect(my_phi)
>>> # Instantiate operator and connect inputs in one line >>> op = dpf.operators.result.cyclic_expansion( ... time_scoping=my_time_scoping, ... mesh_scoping=my_mesh_scoping, ... fields_container=my_fields_container, ... harmonic_index=my_harmonic_index, ... bool_rotate_to_global=my_bool_rotate_to_global, ... map_size_scoping_out=my_map_size_scoping_out, ... normalization_factor=my_normalization_factor, ... merge_stages=my_merge_stages, ... cyclic_support=my_cyclic_support, ... sectors_to_expand=my_sectors_to_expand, ... phi=my_phi, ... )
>>> # Get output data >>> result_fields_container = op.outputs.fields_container()
- _inputs#
- _outputs#
- static _spec() ansys.dpf.core.operators.specification.Specification #
- static default_config(server: ansys.dpf.core.server_types.AnyServerType = None) ansys.dpf.core.config.Config #
Returns the default config of the operator.
This config can then be changed to the user needs and be used to instantiate the operator. The Configuration allows to customize how the operation will be processed by the operator.
- Parameters:
server – Server with channel connected to the remote or local instance. When
None
, attempts to use the global server.- Returns:
A new Config instance equivalent to the default config for this operator.
- Return type:
config
- property inputs: InputsCyclicExpansion#
Enables to connect inputs to the operator
- Returns:
An instance of InputsCyclicExpansion.
- Return type:
inputs
- property outputs: OutputsCyclicExpansion#
Enables to get outputs of the operator by evaluating it
- Returns:
An instance of OutputsCyclicExpansion.
- Return type:
outputs