Field#

class ansys.dpf.core.field.Field(nentities=0, nature=natures.vector, location=locations.nodal, field=None, server=None)#

Bases: ansys.dpf.core.field_base._FieldBase

Represents the main simulation data container.

This can be evaluated data from the Operator class or created by a factory and directly by an instance of this class.

A field’s data is always associated to its scoping (entities associated to each value) and support (subset of the model where the data is), making the field a self-describing piece of data.

The field’s scoping defines the order of the data, for example: the first ID in the scoping identifies to which entity the first entity data belongs.

For more information, see the Fields container and fields documentation section.

Parameters:
  • nentities (int, optional) – Number of entities reserved. The default is 0.

  • nature (ansys.dpf.core.common.natures, optional) – Nature of the field.

  • location (str, optional) –

    Location of the field. Options are in locations

    • dpf.locations.nodal

    • dpf.locations.elemental

    • dpf.locations.elemental_nodal

  • field (Field, ansys.grpc.dpf.field_pb2.Field, ctypes.c_void_p, optional) – Field message generated from a gRPC stub, or returned by DPF’s C clients.

  • server (ansys.dpf.core.server, optional) – Server with the channel connected to the remote or local instance. The default is None, in which case an attempt is made to use the global server.

Examples

Create a field from scratch.

>>> from ansys.dpf.core import fields_factory
>>> from ansys.dpf.core import locations
>>> from ansys.dpf import core as dpf
>>> field_with_classic_api = dpf.Field()
>>> field_with_classic_api.location = locations.nodal
>>> field_with_factory = fields_factory.create_scalar_field(10)

Extract a displacement field from a transient result file.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> len(field)
11460
>>> field.component_count
3
>>> field.elementary_data_count
3820

Create a displacement field.

>>> from ansys.dpf import core as dpf
>>> import numpy as np
>>> my_field = dpf.Field(10, dpf.natures.vector,dpf.locations.nodal)
>>> my_field.data = np.zeros(30)
>>> my_field.scoping.ids = range(1,11)

Set data.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> field.data[2]
DPFArray([-0.00672665, -0.03213735,  0.00016716]...

Accessing data with a custom order.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> ids_order = [2,3]
>>> stress = model.results.stress(mesh_scoping=dpf.Scoping(
...     ids=ids_order, location=dpf.locations.nodal))
>>> fields_container = stress.outputs.fields_container()
>>> field = fields_container[0]
>>> field.scoping.ids
DPFArray([3, 2]...
>>> field.data
DPFArray([[  3755059.33333333,  -2398534.3515625 , -27519072.33333333,
             2194748.65625   ,   8306637.58333333,   2018637.03125   ],
          [  2796852.09375   ,   -992492.62304688,  22519752.625     ,
            -1049027.46875   ,  10846776.1875    ,   4119072.3125    ]]...
>>> field.get_entity_data_by_id(2)
DPFArray([[ 2796852.09375   ,  -992492.62304688, 22519752.625     ,
           -1049027.46875   , 10846776.1875    ,  4119072.3125    ]]...
>>> field.get_entity_data_by_id(3)
DPFArray([[  3755059.33333333,  -2398534.3515625 , -27519072.33333333,
             2194748.65625   ,   8306637.58333333,   2018637.03125   ]]...

Overview#

as_local_field

Create a deep copy of the field that can be accessed and modified locally.

get_entity_data

Retrieve entity data by index.

get_entity_data_by_id

Retrieve entity data by id.

append

Append data to the Field.

to_nodal

Convert the field to one with a Nodal location.

plot

Plot the field or fields container on the mesh support if it exists.

resize

Allocate memory.

min

Retrieve the component-wise minimum over this field.

max

Retrieve the component-wise maximum over this field.

deep_copy

Create a deep copy of the field’s data on a given server.

location

Field location.

component_count

Number of components.

elementary_data_count

Number of elementary data.

size

Size of data.

shell_layers

Order of the shell layers.

unit

Units for the field.

dimensionality

Dimensionality represents the shape of the elementary data contained in the field.

name

Name of the field.

field_definition

Field information, including its location, unit, dimensionality, and shell layers.

time_freq_support

Time frequency support of the field.

meshed_region

Meshed region of the field.

__add__

Add two fields.

__pow__

Compute element-wise field[i]^2.

__mul__

Multiplies two fields.

__sub__

Subtract two fields.

Import detail#

from ansys.dpf.core.field import Field

Property detail#

property Field.location#

Field location.

Returns:

Location string, Options are in locations.

Return type:

str

Examples

Location for a stress field evaluated at nodes.

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> model = dpf.Model(examples.download_transient_result())
>>> s_op = model.results.stress()
>>> s_fc = s_op.outputs.fields_container()
>>> field = s_fc[0]
>>> field.location
'ElementalNodal'
property Field.component_count#

Number of components.

property Field.elementary_data_count#

Number of elementary data.

property Field.size#

Size of data.

property Field.shell_layers#

Order of the shell layers.

Return type:

ansys.dpf.core.common.shell_layers

property Field.unit#

Units for the field.

Returns:

Units for the field.

Return type:

str

Examples

Units for a displacement field.

>>> from ansys.dpf import core as dpf
>>> my_field = dpf.Field(10, dpf.natures.vector,dpf.locations.nodal)
>>> my_field.unit = "m"
>>> my_field.unit
'm'
property Field.dimensionality#

Dimensionality represents the shape of the elementary data contained in the field.

Returns:

dimensionality – Nature and size of the elementary data.

Return type:

ansys.dpf.core.dimensionality.Dimensionality

property Field.name#

Name of the field.

property Field.field_definition#

Field information, including its location, unit, dimensionality, and shell layers.

Return type:

ansys.dpf.core.field_definition.FieldDefinition

property Field.time_freq_support#

Time frequency support of the field.

Return type:

ansys.dpf.core.time_freq_support.TimeFreqSupport

property Field.meshed_region#

Meshed region of the field.

Return type:

ansys.dpf.core.meshed_region.MeshedRegion

Method detail#

Field.as_local_field()#

Create a deep copy of the field that can be accessed and modified locally.

This method allows you to access and modify the local copy of the field without sending a request to the server. It should be used in a with statement so that the local field is released and the data is sent to the server in one action. If it is not used in a with statement, Field.release_data() should be used to update the field.

Warning

If this as_local_field method is not used as a context manager in a with statement or if the method release_data() is not called, the data will not be updated.

Returns:

local_field

Return type:

Field

Examples

>>> from ansys.dpf import core as dpf
>>> num_entities = 3
>>> field_to_local = dpf.fields_factory.create_3d_vector_field(num_entities, location=dpf.locations.elemental_nodal)
>>> with field_to_local.as_local_field() as f:
...     for i in range(1,num_entities+1):
...         f.append([[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]],i)
...         f.get_entity_data(i-1),[[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]]
(DPFArray([[0.1, 0.2, 0.3],
          [0.1, 0.2, 0.3]]), [[0.1, 0.2, 0.3], [0.1, 0.2, 0.3]])
(DPFArray([[0.2, 0.4, 0.6],
          [0.2, 0.4, 0.6]]), [[0.2, 0.4, 0.6], [0.2, 0.4, 0.6]])
(DPFArray([[0.3, 0.6, 0.9],
          [0.3, 0.6, 0.9]]), [[0.30000000000000004, 0.6000000000000001, 0.8999999999999999], [0.30000000000000004, 0.6000000000000001, 0.8999999999999999]])
Field.get_entity_data(index: int) ansys.dpf.gate.dpf_array.DPFArray#

Retrieve entity data by index.

Field.get_entity_data_by_id(id: int) ansys.dpf.gate.dpf_array.DPFArray#

Retrieve entity data by id.

Field.append(data, scopingid)#

Append data to the Field.

Field.to_nodal()#

Convert the field to one with a Nodal location.

This method is valid only when the field’s current location is ElementalNodal or Elemental.

Returns:

nodal_field – with location=='Nodal'.

Return type:

Field

Field.plot(shell_layers=None, deform_by=None, scale_factor=1.0, **kwargs)#

Plot the field or fields container on the mesh support if it exists.

Warning

This method is primarily added out of convenience as plotting directly from the field can be slower than extracting the meshed region and plotting the field on top of that. It is more efficient to plot with:

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> mesh = model.metadata.meshed_region
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> mesh.plot(field)
Parameters:
  • shell_layers (shell_layers, optional) – Enum used to set the shell layers if the model to plot contains shell elements. The default is None.

  • deform_by (Field, Result, Operator, optional) – Used to deform the plotted mesh. Must output a 3D vector field. Defaults to None.

  • scale_factor (float, optional) – Scaling factor to apply when warping the mesh. Defaults to 1.0.

  • **kwargs (optional) – Additional keyword arguments for the plotter. For additional keyword arguments, see help(pyvista.plot).

Field.resize(nentities, datasize)#

Allocate memory.

Parameters:
  • nentities (int) – Number of IDs in the scoping.

  • datasize (int) – Size of the data vector.

Field.__add__(field_b)#

Add two fields.

Return type:

ansys.dpf.core.operators.math.add.add

Field.__pow__(value)#

Compute element-wise field[i]^2.

Field.__mul__(value)#

Multiplies two fields.

Return type:

ansys.dpf.core.operators.math.generalized_inner_product.generalized_inner_product

Field.__sub__(fields_b)#

Subtract two fields.

Return type:

ansys.dpf.core.operators.math.minus.minus

Field.min()#

Retrieve the component-wise minimum over this field.

Returns:

min – Component-wise minimum field.

Return type:

Field

Field.max()#

Retrieve the component-wise maximum over this field.

Returns:

max – Component-wise maximum field.

Return type:

Field

Field.deep_copy(server=None)#

Create a deep copy of the field’s data on a given server.

This method can be useful for passing data from one server instance to another.

Parameters:

server (ansys.dpf.core.server, optional) – Server with the channel connected to the remote or local instance. The default is None, in which case an attempt is made to use the global server.

Returns:

field_copy

Return type:

Field

Examples

>>> from ansys.dpf import core as dpf
>>> from ansys.dpf.core import examples
>>> transient = examples.download_transient_result()
>>> model = dpf.Model(transient)
>>> disp = model.results.displacement()
>>> fields_container = disp.outputs.fields_container()
>>> field = fields_container[0]
>>> other_server = dpf.start_local_server(as_global=False)
>>> deep_copy = field.deep_copy(server=other_server)