:class:`DataSources` ==================== .. py:class:: ansys.dpf.core.data_sources.DataSources(result_path: Union[str, os.PathLike] = None, data_sources: Union[ansys.dpf.core.DataSources, int, ansys.grpc.dpf.data_sources_pb2.DataSources] = None, server: ansys.dpf.core.server_types.AnyServerType = None) Manages paths to files as sources of data. Use this object to declare data inputs for DPF and define their locations. An extension key (``'rst'`` for example) is used to choose which files represent results files versus accessory files. You can set a result file path when initializing this class. :param result_path: Path of the result. :param data_sources: gRPC data sources message. :param server: Server with the channel connected to the remote or local instance. The default is ``None``, in which case an attempt is made to use the global server. .. rubric:: Examples Initialize a model from a result path. >>> from ansys.dpf import core as dpf >>> # Create the DataSources object with a main file path >>> my_data_sources = dpf.DataSources(result_path='file.rst') >>> # Get the path to the main result file >>> my_data_sources.result_files ['file.rst'] .. py:currentmodule:: DataSources Overview -------- .. tab-set:: .. tab-item:: Methods .. list-table:: :header-rows: 0 :widths: auto * - :py:attr:`~set_result_file_path` - Set the main result file path to the data sources. * - :py:attr:`~set_domain_result_file_path` - Set a result file path for a specific domain. * - :py:attr:`~add_file_path` - Add an accessory file path to the data sources. * - :py:attr:`~add_domain_file_path` - Add an accessory file path to the data sources in the given domain. * - :py:attr:`~add_file_path_for_specified_result` - Add a file path for a specified result file key to the data sources. * - :py:attr:`~add_upstream` - Add upstream data sources to the main DataSources object. * - :py:attr:`~add_upstream_for_domain` - Add an upstream data sources to the main DataSources object for a given domain. * - :py:attr:`~register_namespace` - Associate a ``result_key`` to a ``namespace`` for this `DataSources`` instance. .. tab-item:: Properties .. list-table:: :header-rows: 0 :widths: auto * - :py:attr:`~result_key` - Result key used by the data sources. * - :py:attr:`~result_files` - List of result files contained in the data sources. .. tab-item:: Static methods .. list-table:: :header-rows: 0 :widths: auto * - :py:attr:`~guess_result_key` - Guess result key for files without a file extension. * - :py:attr:`~guess_second_key` - For files with an h5 or cff extension, look for another extension. .. tab-item:: Special methods .. list-table:: :header-rows: 0 :widths: auto * - :py:attr:`~__str__` - Describe the entity. * - :py:attr:`~__del__` - Delete this instance. Import detail ------------- .. code-block:: python from ansys.dpf.core.data_sources import DataSources Property detail --------------- .. py:property:: result_key :type: str Result key used by the data sources. :returns: Result key. :rtype: str .. rubric:: Examples >>> from ansys.dpf import core as dpf >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result file can be found >>> my_data_sources.set_result_file_path(filepath='/tmp/file.rst', key='rst') >>> # Get the to the main result file >>> my_data_sources.result_key 'rst' .. py:property:: result_files :type: list[str] List of result files contained in the data sources. :returns: List of result file paths. :rtype: list .. rubric:: Examples Get the path to the result file set using :func:`set_result_file_path() `. >>> from ansys.dpf import core as dpf >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result file can be found >>> my_data_sources.set_result_file_path(filepath='/tmp/file.cas', key='cas') >>> # Add the additional result file to the DataSources object >>> my_data_sources.add_file_path(filepath='/tmp/ds.dat', key='dat') >>> # Get the path to the main result file >>> my_data_sources.result_files ['...tmp...file.cas'] If you added an upstream result file, it is not listed in the main ``DataSources`` object. You have to check directly in the ``DataSources`` object created to define the upstream data. >>> from ansys.dpf import core as dpf >>> >>> # Create the main DataSources object with a main file path >>> my_data_sources = dpf.DataSources(result_path='/tmp/file.rfrq') >>> >>> # Create the DataSources object for the upstream data >>> my_data_sources_upstream = dpf.DataSources(result_path='/tmp/file.mode') >>> # Add the additional upstream data to the upstream DataSources object >>> my_data_sources_upstream.add_file_path(filepath='/tmp/file.rst', key='rst') >>> >>> # Add the upstream DataSources to the main DataSources object >>> my_data_sources.add_upstream(upstream_data_sources=my_data_sources_upstream) >>> >>> # Get the path to the main result file of the main DataSources object >>> my_data_sources.result_files ['...tmp...file.rfrq'] If you are checking the DataSources object created to define the upstream data, only the first one is listed. >>> # Get the path to the upstream file of the upstream DataSources object >>> my_data_sources_upstream.result_files ['...tmp...file.mode'] If you have a ``DataSources`` object with more than one domain, an empty list is returned. >>> from ansys.dpf import core as dpf >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result data can be found and specify its domain >>> my_data_sources.set_domain_result_file_path(path='/tmp/file0.rst', key='rst', domain_id=0) >>> my_data_sources.set_domain_result_file_path(path='/tmp/file1.rst', key='rst', domain_id=1) >>> >>> # Get the path to the main result files of the DataSources object >>> my_data_sources.result_files [None, None] Method detail ------------- .. py:method:: set_result_file_path(filepath: Union[str, os.PathLike], key: str = '') -> None Set the main result file path to the data sources. :param filepath: Path to the result file. :param key: Extension of the file, which is used as a key for choosing the correct plugin when a result is requested by an operator. Overrides the default key detection logic. .. rubric:: Examples Create a data source and set the result file path. >>> from ansys.dpf import core as dpf >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result file can be found >>> my_data_sources.set_result_file_path(filepath='/tmp/file.rst', key='rst') >>> # Get the path to the main result file >>> my_data_sources.result_files ['...tmp...file.rst'] .. py:method:: guess_result_key(filepath: Union[str, os.PathLike]) -> str :staticmethod: Guess result key for files without a file extension. :param filepath: Path to the file. :returns: Extension key name. :rtype: str .. rubric:: Examples Gives the result key for the result file of the given path >>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Download the result files >>> path = examples.download_d3plot_beam() >>> # Define the path where the main result file can be found >>> my_data_sources.set_result_file_path(filepath=path[0]) >>> # Detect the result key for the file in the given path >>> my_file_key = my_data_sources.guess_result_key(filepath=path[0]) >>> print(my_file_key) d3plot .. py:method:: guess_second_key(filepath: Union[str, os.PathLike]) -> str :staticmethod: For files with an h5 or cff extension, look for another extension. :param filepath: Path to the file. :returns: First extension key name. :rtype: str .. rubric:: Examples Find the first extension key of a result file with multiple extensions keys. >>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> >>> # Download the result files >>> paths = examples.download_fluent_axial_comp() >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the extension key for the file in the given path >>> # We see that the paths are given in a dictionary. >>> # So to choose the correct file you need to give as an argument: >>> # - the list label >>> # - the file index in that list >>> my_file_key = my_data_sources.guess_second_key(filepath=paths["cas"][0]) >>> print(my_file_key) cas .. py:method:: set_domain_result_file_path(path: Union[str, os.PathLike], domain_id: int, key: str = None) -> None Set a result file path for a specific domain. This method is used to handle files created by a distributed solve. :param path: Path to the file. :param domain_id: Domain ID for the distributed files. :param key: Key to associate to the file. .. rubric:: Examples Set the main result file path to the data sources in their respective domains. >>> from ansys.dpf import core as dpf >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result data can be found and specify its domain >>> my_data_sources.set_domain_result_file_path(path='/tmp/file0.rst', key='rst', domain_id=0) >>> my_data_sources.set_domain_result_file_path(path='/tmp/file1.rst', key='rst', domain_id=1) .. py:method:: add_file_path(filepath: Union[str, os.PathLike], key: str = '', is_domain: bool = False, domain_id: int = 0) -> None Add an accessory file path to the data sources. Files not added as result files are accessory files, which contain accessory information not present in the result files. :param filepath: Path of the file. :param key: Extension of the file, which is used as a key for choosing the correct plugin when a result is requested by an operator. Overrides the default key detection logic. :param is_domain: Whether the file path is the domain path. :param domain_id: Domain ID for the distributed files. For this parameter to be taken into account, ``domain_path=True`` must be set. .. rubric:: Examples Add an accessory file to the DataSources object. >>> from ansys.dpf import core as dpf >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result file can be found >>> my_data_sources.set_result_file_path(filepath='/tmp/file.cas', key='cas') >>> # Add the additional result file to the DataSources object >>> my_data_sources.add_file_path(filepath='/tmp/ds.dat', key='dat') .. py:method:: add_domain_file_path(filepath: Union[str, os.PathLike], key: str, domain_id: int) -> None Add an accessory file path to the data sources in the given domain. Files not added as result files are accessory files, which contain accessory information not present in the result files. :param filepath: Path of the file. :param key: Extension of the file, which is used as a key for choosing the correct plugin when a result is requested by an operator. :param domain_id: Domain ID for the distributed files. .. rubric:: Examples Add an accessory file for a specific domain >>> from ansys.dpf import core as dpf >>> >>> # Create the DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result data can be found and specify its domain >>> my_data_sources.set_domain_result_file_path(path='/tmp/ds.cas', key='cas', domain_id=1) >>> # Add the additional result data to the DataSources object and specify its domain >>> my_data_sources.add_domain_file_path(filepath='/tmp/ds.dat', key="dat", domain_id=1) .. py:method:: add_file_path_for_specified_result(filepath: Union[str, os.PathLike], key: str = '', result_key: str = '') -> None Add a file path for a specified result file key to the data sources. This method can be used when results files with different keys (extensions) are contained in the data sources. For example, a solve using two different solvers could generate two different sets of files. :param filepath: Path of the file. :param key: Extension of the file, which is used as a key for choosing the correct plugin when a result is requested by an operator. Overrides the default key detection logic. :param result_key: Extension of the results file that the specified file path belongs to. The default is ``""``, in which case the key is found directly. .. py:method:: add_upstream(upstream_data_sources: DataSources, result_key: str = '') -> None Add upstream data sources to the main DataSources object. This is used to add a set of paths creating an upstream for recursive workflows. :param upstream_data_sources: Set of paths creating an upstream for recursive workflows. :param result_key: Extension of the result file group for the upstream data source. .. rubric:: Examples Add upstream data to the main DataSources object of an expansion analysis. >>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> >>> # Download the result files >>> paths = examples.download_msup_files_to_dict() >>> # Create the main DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result data can be found >>> my_data_sources.set_result_file_path(filepath=paths["rfrq"], key='rfrq') >>> >>> # Create the DataSources object for the upstream data >>> my_data_sources_upstream = dpf.DataSources() >>> # Define the path where the main upstream data can be found >>> my_data_sources_upstream.set_result_file_path(filepath=paths["mode"], key='mode') >>> # Add the additional upstream data to the upstream DataSources object >>> my_data_sources_upstream.add_file_path(filepath=paths["rst"], key='rst') >>> >>> # Add the upstream DataSources to the main DataSources object >>> my_data_sources.add_upstream(upstream_data_sources=my_data_sources_upstream) .. py:method:: add_upstream_for_domain(upstream_data_sources: DataSources, domain_id: int) -> None Add an upstream data sources to the main DataSources object for a given domain. This is used to add a set of path creating an upstream for recursive workflows in a distributed solve. :param upstream_data_sources: Set of paths creating an upstream for recursive workflows. :param domain_id: Domain id for distributed files. .. rubric:: Examples Add an upstream data to the main DataSources object of an expansion distributed analysis. >>> import os >>> >>> from ansys.dpf import core as dpf >>> from ansys.dpf.core import examples >>> >>> # Download the result files >>> paths = examples.find_distributed_msup_folder() >>> # Create the main DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result file can be found and specify its domain >>> # We use a format string here because the function used to define the path gives the path to a folder >>> my_data_sources.set_domain_result_file_path(path=os.path.join(paths, "file_load_1.rfrq"), key='rfrq', domain_id=0) >>> # Add the additional result file to the DataSources object and specify its domain >>> my_data_sources.add_domain_file_path(filepath=os.path.join(paths, "file_load_2.rfrq"), key='rfrq', domain_id=1) >>> >>> # Create the DataSources object for the first and second upstream files >>> my_data_sources_upstream_g0 = dpf.DataSources() >>> my_data_sources_upstream_g1 = dpf.DataSources() >>> # Define the path where the main upstream files can be found >>> my_data_sources_upstream_g0.set_result_file_path(filepath=os.path.join(paths, "file0.mode"), key='mode') >>> my_data_sources_upstream_g1.set_result_file_path(filepath=os.path.join(paths, "file1.mode"), key='mode') >>> # Add the additional upstream files to the upstream DataSources objectS >>> my_data_sources_upstream_g0.add_file_path(filepath=os.path.join(paths, "file0.rst"), key='rst') >>> my_data_sources_upstream_g1.add_file_path(filepath=os.path.join(paths, "file1.rst"), key='rst') >>> >>> # Add the upstream DataSources to the main DataSources object and specify its domain >>> my_data_sources.add_upstream_for_domain(upstream_data_sources=my_data_sources_upstream_g0, domain_id=0) >>> my_data_sources.add_upstream_for_domain(upstream_data_sources=my_data_sources_upstream_g1, domain_id=1) .. py:method:: register_namespace(result_key: str, namespace: str) Associate a ``result_key`` to a ``namespace`` for this `DataSources`` instance. The ``result_key`` to ``namespace`` mapping of a ``DataSources`` instance is used by source operators to redirect a specific implementation of the operator. Most public source operators in the documentation are solver-independant interfaces. Plugins bring solver-specific implementations of these operators and record them using a combination of the namespace, the file extension, and the operator name: ``namespace::key::operator_name``. For example, if the namespace associated to the file extension 'rst' is 'mapdl' (which is the case in the default mapping), the 'displacement' source operator tries calling operator ``mapdl::rst::displacement``. This function is useful when creating custom operators or plugins for files with extensions unknown to the DPF framework, or to override the default extension to namespace association. :param result_key: Extension of the file, which is used as a key for choosing the correct plugin when a result is requested by an operator. :param namespace: Namespace to associate the file extension to. .. rubric:: Notes Available with server version starting at 7.0. .. rubric:: Examples >>> from ansys.dpf import core as dpf >>> >>> # Create the main DataSources object >>> my_data_sources = dpf.DataSources() >>> # Define the path where the main result data can be found >>> my_data_sources.set_result_file_path(filepath=r'file.extension', key='extension') >>> # Define the namespace for the results in the given path >>> my_data_sources.register_namespace(result_key='extension', namespace='namespace') .. py:method:: __str__() Describe the entity. :returns: Description of the entity. :rtype: str .. py:method:: __del__() Delete this instance.