Extrapolation method for stress result of a 3D element#

This example shows how to compute the stress nodal components from Gaussian points (integration points) for a 3D element using extrapolation.

Extrapolate results available at Gaussian or quadrature points to nodal points for a field or fields container. The available elements are:

  • Linear quadrangle

  • Parabolic quadrangle

  • Linear hexagonal

  • Quadratic hexagonal

  • Linear tetrahedral

  • Quadratic tetrahedral

Here are the steps for extrapolation:

  1. Get the data source’s solution from the integration points. (This result file was generated with the Ansys Mechanical APDL (MAPDL) option ERESX, NO).

  2. Use the extrapolation operator to compute the nodal stress.

  3. Get the result for nodal stress from the data source. The analysis was computed by MAPDL.

  4. Compare the result for nodal stress from the data source and the nodal stress computed by the extrapolation method.

Note

This example requires the Premium ServerContext. For more information, see Server context.

from ansys.dpf import core as dpf
from ansys.dpf.core import examples


dpf.set_default_server_context(dpf.AvailableServerContexts.premium)

Get the data source’s analysis of integration points and analysis reference

datafile = examples.download_extrapolation_3d_result()

# Get integration points (Gaussian points)
data_integration_points = datafile["file_integrated"]
data_sources_integration_points = dpf.DataSources(data_integration_points)

# Get the reference
dataSourceref = datafile["file_ref"]
data_sources_ref = dpf.DataSources(dataSourceref)

# Get the mesh
model = dpf.Model(data_integration_points)
mesh = model.metadata.meshed_region

# Operator instantiation scoping
op_scoping = dpf.operators.scoping.split_on_property_type()  # operator instantiation
op_scoping.inputs.mesh.connect(mesh)
op_scoping.inputs.requested_location.connect("Elemental")
mesh_scoping = op_scoping.outputs.mesh_scoping()

Extrapolate from integration points for stress result#

This example uses the gauss_to_node_fc operator to compute the nodal component stress result from the stress result of integration points.

# Create stress operator to get stress result of integration points
stressop = dpf.operators.result.stress()
stressop.inputs.data_sources.connect(data_sources_integration_points)
stress = stressop.outputs.fields_container()

Nodal stress result of integration points#

The MAPLD command ERESX,NO is used to copy directly the Gaussian (integration) points results to the nodes, instead of the results at nodes or elements (which are interpolation of results at a few gauss points). The following plot shows the nodal values, which are the averaged values of stresses at each node. The value shown at the node is the average of the stresses from the Gaussian points of each element that it belongs to.

# Plot
stress_nodal_op = dpf.operators.averaging.elemental_nodal_to_nodal_fc()
stress_nodal_op.inputs.fields_container.connect(stress)
mesh.plot(stress_nodal_op.outputs.fields_container())
04 extrapolation stress 3d

Create operator gauss_to_node_fc and compute nodal component stress by applying the extrapolation method.

ex_stress = dpf.operators.averaging.gauss_to_node_fc()
# connect mesh
ex_stress.inputs.mesh.connect(mesh)
# connect fields container stress
ex_stress.inputs.fields_container.connect(stress)
# get output
fex = ex_stress.outputs.fields_container()

Stress result of reference Ansys Workbench#

# Stress from file dataSourceref
stressop_ref = dpf.operators.result.stress()
stressop_ref.inputs.data_sources.connect(data_sources_ref)
stressop_ref.inputs.mesh_scoping.connect(mesh_scoping)
stress_ref = stressop_ref.outputs.fields_container()

Plot#

Show plots of the extrapolation’s stress result and the reference’s stress result

# extrapolation
fex_nodal_op = dpf.operators.averaging.elemental_nodal_to_nodal_fc()
fex_nodal_op.inputs.fields_container.connect(fex)
fex_nodal_fc = fex_nodal_op.eval()
mesh.plot(fex_nodal_fc)

# reference
stress_ref_nodal_op = dpf.operators.averaging.elemental_nodal_to_nodal_fc()
stress_ref_nodal_op.inputs.fields_container.connect(stress_ref)
stress_ref_nodal_fc = stress_ref_nodal_op.eval()
mesh.plot(stress_ref_nodal_fc)
  • 04 extrapolation stress 3d
  • 04 extrapolation stress 3d

Compare stress results#

Compare the stress result computed by extrapolation and the reference’s result. Check if the two fields container are identical using the identical_fc operator. The relative tolerance is set to 1.1e-6. The smallest value that is considered during the comparison step: all the abs(values) in field less than 1e-2 is considered as null.

# operator AreFieldsIdentical_fc
op = dpf.operators.logic.identical_fc()
op.inputs.fields_containerA.connect(fex_nodal_op)
op.inputs.fields_containerB.connect(stress_ref_nodal_op)
op.inputs.tolerance.connect(1.1e-6)
op.inputs.small_value.connect(0.01)
op.outputs.boolean()
True

Compute absolute and relative errors

abs_error_sqr = dpf.operators.math.sqr_fc()
abs_error = dpf.operators.math.sqrt_fc()
error = stress_ref_nodal_op - fex_nodal_op
abs_error_sqr.inputs.fields_container.connect(error)
abs_error.inputs.fields_container.connect(abs_error_sqr)


divide = dpf.operators.math.component_wise_divide()
divide.inputs.fieldA.connect(stress_ref_nodal_op - fex_nodal_op)
divide.inputs.fieldB.connect(stress_ref_nodal_op)
rel_error = dpf.operators.math.scale()
rel_error.inputs.field.connect(divide)
rel_error.inputs.ponderation.connect(1.0)

Plot absolute and relative errors. The absolute value is the order of 10, which is very small when compared to the magnitude of 1e8 of the displacements. This is reflected in the relative error plot, where the errors are found to be below 1.02e-6%. The result of these plots can be used to set the tolerances for the identical_fc operator.

mesh.plot(abs_error.eval(), scalar_bar_args={"title": "Absolute error [mm]"})
mesh.plot(rel_error.eval(), scalar_bar_args={"title": "Relative error [%]"})
  • 04 extrapolation stress 3d
  • 04 extrapolation stress 3d

Total running time of the script: ( 0 minutes 5.597 seconds)

Gallery generated by Sphinx-Gallery